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The lupine (Lupinus luteus cv. Ventus) cDNA clones encoding homologues of
eyelin (CyeB1;2, CycBI;3, CyvcB1;4) have been isolated from cDNA library pre-
pared from roots inoculated with Bradyrhizobium lupini. Comparison of the
deduced amino-acid sequences of CycBI;2, CyeBI1;3, CycBI1;4 and previously
described CycBI;1 (Deckert et al. 1998, Biochimie 78, 90-94) showed that they
share 46-85% of identical amino acids. The presence of conserved residues
(Renaudin et al., in The Plant Cell Cycle, in the press; Renaudin et al., Plant
Mol. Biol., in the press) along with phylogenetic analysis of known plant cyclins
revealed that the four lupine sequences belong to subgroup I of B-like mitotic

cyclins.

Although the primary concept of the cell
cycle was based on observation made on
plant cells [1], the molecular mechanisms
regulating eukaryotic cell division have
mostly been investigated in yeast and animal
cells. A combination of biochemical and mo-
lecular genetic approaches have shown that
cell division is regulated by a protein complex
consisting of p34"'d"" protein kinase (or re-
lated CDK) and cyclin [2, 3]. The p34°%?
protein kinase plays a catalytic role, whereas
the %cglin moiety is a regulatory subunit. The
p34™“/cyclin complex is required at two con-
trol points of the cell eycle: between G1 and
S phase and between G2 and mitosis. The

pioneering study of Hata et al. [4] has shown
that higher plants also contain the functional
homologues of the cyclin gene. Since then,
cyclin cDNA clones have been reported for
many plant species (reviewed by [5-8]). A
sequence comparison and functional study
indicate that plant ¢cDNAs, identified thus
far, represent mitotic cyclins of type A and B
[4, 9-14], G1 cyclins of type D [15, 16], cyclin
expressed during S phase [12] and induced
in GO to G1 transition [17].

The two comprehensive reviews on plant
cyclin structure, function and classification
have been recently published [18, 19]. The
plant cyclin nomenclature proposed by
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Renaudin et al. [19] and accepted by the
Commission on Plant Gene Nomenclature
has been used throughout this paper.

The progression of the cell cycle and the key
molecules regulating cell division seem to be
conserved throughout evolution, however,
the development of higher plants differs in
many significant aspects from other organ-
isms. The cell division of higher plants is
localized in meristematic tissues, such as the
shoot and root apical meristems and cam-
bium. The differentiated, non-dividing plant
cells are capable of reentering the cell cycle
as a result of developmental control and in
response to plant-specific signals such as
phytohormones, light, gravity, wounding and
pathogenic or symbiotic interactions.

We have previously reported the isolation
of the first full length cyclin ¢cDNA clone
(CycB1;1) from yellow lupine [20]. As a part
of our study on regulation of cell-cycle genes
in legume plants we report here the charac-
terization of three more cyclin-related clones
from Lupinus luteus and present the phylo-
genetic analysis of lupine cyclins.

MATERIALS AND METHODS

Thg:nﬁyclin clones were isolated from Uni-
ZAP "XR (Stratagene) cDNA library made
of poly(A)+RNA from Lupinus luteus (L) cv.
Ventus roots, inoculated with Bradyrhizo-
bium lupini (strain USDA 3045). About
2.8 x 10" recombinants were transferred to
nitrocellulose membranes and screened us-
ing Hincll/Hindlll fragment of soybean cy-
clin cDNA clone. The probe was labeled using
the Boehringer Mannheim Random Primer
Labeling kit and [a-*2P]JATP (NEN). The hy-
bridization was carried out at 50°C in the
solution recommended by Stratagene.

The fragments of cDNA were subcloned into
pBluescript SK+/— (Stratagene) or pK18 [21]
plasmid vectors and sequences were deter-

mined on both strands by the dideoxy chain-
termination method and using TaqTrack Se-
quencing Systems (Promega). When requ-
ired, oligonucleotides (18-mers) were synthe-
sized according to sequence information and
used directly as primers for further sequenc-
ing. The sequences of CyeB1;2, CycB1;3 and
CyeB1;4 were submitted to GenBank and
will appear under the accession numbers:
U24193, U23194, U44857.

RESULTS AND DISCUSSION

Recently we have reported the first lupine
cyclin ¢cDNA clone named according to the
nomenclature proposed by Renaudin et al.
[19] as CyeB1;1 [20]. The second full length
cDNA clone, CycB1;4, encodes a protein com-
posed of 475 amino acids and its predicted
molecular mass is 52.8 kDa. The two other
partial cDNA clones, designated as CyeBI;2
and CycBI1;3 are composed of 350 and 420
amino acids, respectively. Alignment of the
four predicted lupine cyclins over their entire
length (Fig. 1) showed the highest similarity
of CyeB1;3 and CycB1;4 (76% homology, 65%
identity), whereas the CyeB1;1 and CycB1;2
are the least related to each other (64% ho-
mology, 46% identity). Our data suggest that
similarly to other plant species, lupine con-
tains a family of cyclin-related genes.

The conserved sequence motif, destruction
box, which is responsible for cell-cycle regu-
lated degradation of cyclins, has been de-
tected close to the amino terminus of CyeB1;4
(amino acids 35 to 43). The amino-acid com-
position of this motif, RKALGDIGN, indi-
cates the similarity of CycBI1;4 to mitotic
cyclin of type B [22]. The predicted amino-
acid sequence of CyeBI;3 starts with trun-
cated destruction box motif, DIGN (amino
acids 1 to 4), at the N-terminus. The putative
CycB1;3 protein contains a PEST-like se-
quence (Pro-Glu-Ser-Thr) near the carboxyl

Figure 1. Alignment of deduced amino-acid sequences of lupine cyclins.

The destruction box is underlined twice, the cyclin box is bordered by the symhols > < and a putative PEST-like
element of CycB1,3 is underlined by a dotted line. Residues identical in all lupine cyclin sequences are indicated
by asterisks. The plant specific sequence motifs [13, 18] are underlined. Conserved amino acids in A- and B-type
cyelins {A-con and B-con) are shown below the lupine cyclins. The CLUSTAL program was used for alignment.
The nucleotide sequences of CyeB1;1, CycBI1:2, CycB1;3 and CycB1;4 have been submitted to the GenBank with
the respective accession numbers: U24192, U24193, 24194, 144857,
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CyeB1;1 Arabldopsis thaliang
CycBl:2 Lupinus luteusy
— CycB1:1 Glycine max
CycB1;3 Lupinus heteus
CycBl:4 Lupinus lutews
CycB1;1 Amtirrhinum majfus
CycBl1:2 Antirrhinum mafus

CyeB2;2 Oryza sativa
_-'— CycB2;1 Zea mays
CycB2;| Arabidopsis thaliana
e CycB2:2 Arabidopsis thaliana
— | CycB2;3 Medicago sativa
ICJ':B'I;I Medicago sativa

|le'ﬂl!-2:l Medicago sativa
CycB2:2 Medicago sativa
CycAl;l Zea mays

CyeAl;l Brassica nopus
— CycAl;l Gycine max

CycAlil Nicoriana tabocum
e _[C}thl;l Nicotiana tabgcum
CycAl;l Nicotizng tabacum

CycAd;l Nicotiana tabacum
CycA3;] Glycine max

CycA2:l Arabidopsis thaliana
_I—cm:;z Arabidopsis thaliana
CycA2:4 Arabidopsis thaliona

CycA2;1 Nicoriana rabacum

10

e

Figure 2. Phylogenetic tree of the plant mitotic eyelins.

Topology of the tree has been inferred from 213 positions of amino acid alipnment, using the protein maximum
parsimony algorithm; branch lengths have been recomputed using the Fitch-Margoliash method on the distance
matrix obtained from the same protein sequence. Horizontal lengths reveal divergence. Sequences have been
aligned by the CLUSTAL program, other computations have been performed with programs from Joe Felstein's
PHYLIP package. The following cyclin sequences with accession numbers indicated in brackets were included:
CycB1;2.Zm (U10078), CycB1;1-Zm (U10079), CycB1;1-LI (U24192), CycB1;1-Nt (Z3T978), CycB1;1-At (X62279),
CycB1;2-Li (U24193), CycB1,1-Gm (X62820), CycB1;3-Li (U24194), CycB14-L1 (U44857), CyeBI;1-Am (X76122),
CycB1:2-Am (X76123), CycB2:2-Os (X82036), CycB2;1-Zm (U10076), CycB2;:1-At (231400), CycB2:2-At (231401),
CycB2;3-Ms (X78504), CycB2;1-Ms (X82039), CycB2;:1-Ms (fragment — X68740), CycB2:2-Ms (X82040), CyeAll-
Zm (U10077), CycAl;1-Bn (L25406), CycAl;1-Gm (D50870), CycAl:2-Nt (X92967), CycAl;1-Nt (X92966), Cyedl;1-
Nt (fragment — D50735), CyeA3;1-Ne (X92964), CyeA3;1-Gm (D50BE8), CycAS;1-De (849312), CyeAd:3-Nt (X93457),
CyeAZ:2-Nt (X92965), CycA2;1-Bn (L25405), CycA2:1-Ms (X85783), CycAZ;1-At (Z31589), CycAZ;2-Ar (Z31402),
CycA2:4-At (U17889), CyeA2;1-Gm (D50869), CyeA2;1-Nt (D50T736).
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terminus. The PEST element is characte-
ristic for G1 eyclins [23] lacking the destruc-
tion box and is common to rapidly degraded
proteins [24]. The presence of two distinct
sequence motifs, responsible for rapid pro-
tein degradation, the destruction box and
PEST element, has been described for three
other plant eyclins: Arabidopsis thaliana
CycAZ2;1 and CycA2;2 [9] and Brasica napus
CycAl;1 [25]. The HRPITRSF-like motif,
which seems to be conserved in plant B-type
cyclins [18, 19], is located close to the destruc-
tion box of CyeBI1;1, CycB1;3 and CycBI:4.
The sequence motif characteristic for the B-
type cyclin of subgroup I, KEXXXTL(S/T)-
(S/T)VL(S/'T)ARSKAACG, is well conserved
in CycBI;1, CyeB1;2 and CycB1;4 and par-
tially changed in the CycB1;3 clone. In spite
of the overall similarities of all lupine cyclins,
no homology was observed in the amino-ter-
minal regions preceding the destruction box
of CyeB1I;1 and CyeB1:4 (Fig. 1).

The centrally located eyelin box contains
conserved amino acids of both A- and B-type
of mitotic cyclins in all lupine sequences
(Fig. 1) and this feature has been reported for
several plant cyclins [4, 9, 12-14].

Based on sequence homology, Renaudin ef
al. [20, 21] proposed that higher plants form
three cyclin A subgroups and two cyclin B
subgroups, which differ from classes reported
for other organisms. The sequences of 37
plant cyclins were aligned by the CLUSTAL
program, across 213 amino acids of the cyclin
box. The constructed phylogenetic tree con-
firmed that plants have five subgroups of
mitotic cyclins [18, 19] and revealed that all
lupine sequences belong to B-like cyclins of
subgroup I (Fig. 2), along with proteins from
five other species, both mono- and dicotyle-
donous plants.

Although the four lupine cyclins described
here belong to the same structural group,
their function at particular stages of the cell
cycle, regulation by plant-specific factors and
during plant developmental processes re-
main to be established.

We are grateful to Dr M. Sikorski for his
kind cooperation in handling of the lupine
cDNA library and Mr Jacek Biesiadka for
computer analysis of cyclin sequences. We

would like to thank Dr H. Kouchi for the
soybean S-13-7 clone and Dr J.-P. Renaudin
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menclature prior to publication.
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