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B-50/GAP-43 is a growth-associated phosphoprotein enriched in growth cones and
in the presynaptic terminal. The expression of the protein is restricted to the nervous
system and is highest in the first week after birth. In adult brain, B-50 is enriched in
areas with high plasticity. The regulation of expression of the B-50 gene occurs both
at the transcriptional and post-transcriptional level by unknown mechanisms. The
gene contains 2 regions displaying promoter activity, the most 3° of which (P2) is the
active one in vivo. Expression of B-50 in non-neuronal cells results in filopodial
extensions whereas antibodies or antisense oligo’s to B-50 prevent neurite outgrowth,
The protein is important for neuronal pathfinding. Several post-translational
modifications have been described, ADP-ribosylation and palmitoylation in the
membrane binding domain, phosphorylation by PKC, casein kinase Il and
phosphorylase kinase, and dephosphorylation by several phosphatases, among which
is calcineurin. Interactions of B-50 have been described with calmodulin, PIP kinase,
F-actin, and phospholipids. Recent studies indicate that the phosphorylation state and
amount of calmodulin bound to B-50 regulate the rate of transmitter release. Induction
of long-term potentiation by high frequency stimulation of hippocampal slices results
in an increased state of B-50 phosphorylation. This will increase the amount of free
calmodulin in the presynaptic terminal and increase the amount of transmitter
released. Although B-50 is involved in seemingly unrelated forms of neuronal
plasticity, neurite outgrowth and transmitter release, our unifying hypothesis is that
the protein plays an (unknown) essential, modulatory role in membrane expansion.

B-50 has originally been characterized as a
phosphoprotein in adult rat brain [1], where it
is located at the presynaptic membrane [2]. The
identical protein GAP-43 was described as a
member of the family of growth-associated
proteins (GAPs) in the nervous system. These
represent a relatively small subset of proteins
synthesized at strikingly high levels during

neurite outgrowth [3, 4]. The best characterized
member of the family is B-50/GAP-43. It is
consistently expressed during both develop-
mental and regenerative axonal growth, and
delivered by fastaxonal transport to the extend-
ing neurite, especially to the growth cones [3, 4].
The presumed mediating role of B-50 in neurite
growth is documented by a large number of
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studies in different neuronal systems during the
last decade (see reviews by Benowitz & Routten-
berg [5] and Skene [6]). Most recent studies in
transgenic mice indicate that overexpressed B-50
modifies neurite pathfinding [7, 8].

EXPRESSION OF B-50 IN THE NERVOUS
SYSTEM

During embryogenesis B-50 is expressed in
developing axons of virtually all systems of the
brain (9, 10]. Although B-50 is predominantly
expressed in neurons, under certain circum-
stances B-50 is also present in other tissue [11]
and in other cell types of the nervous system
[12-15].

In mature non-damaged neurons of the adult
brain B-50 expression is mostly low. High levels of
B-50 expression are detected after nerve injury in
regenerating axons [16-18] and in neurons which
are believed to be involved in ongoing synaptic
remodelling, e.g. in human associative brain areas
[19, 20] and rat hippocampal areas (i.e. the pyrami-
dal cells) and olfactory areas [21-23].

REGULATION OF B-50 mRNA EXPRESSION

The expression of B-50 mRNA as studied by
Northern blotting or in situ hybridization is
increased during development, neuritogenesis
and regeneration. During development B-50 is
expressed at a very early stage, before express-
ion of the neurofilaments, and coincides with
neuritogenesis and pathfinding but not with
synaptogenesis [24].

Extracellular regulation

In vivo, factors that can regulate the B-50
mRNA expression during development are sex
hormones. During early postnatal life a sex
dimorphism exists in the cortex, the bed nuclei
of the stria terminalis and the medial preoptic
nuclei, indicated by higher levels of B-50
mRNA in males compared to females [25]. B-50
mRNA expression is upregulated by estrogen
in the cortex and ventromedial hypothalamus
(VMH) [26]. Levels of B-50 expression in the
cortex, the bed nuclei of the stria terminalis and
the medial preoptic nuclei are differentially
regulated by estrogen and androgen [27].

Many studies have investigated the regula-
tion of B-50 mRNA expression after nerve or
brain injury [17, 18, 28, 29]. From studies on
peripheral or central lesioning it was demon-

strated that B-50 is upregulated after central
injury only when the injury is close to the cell
body, while in peripheral lesioning distance
does not influence B-50 expression [16, 30].
Therefore it is clear that the event of axonal
injury or disruption of target contact per se is
not sufficient for the induction of B-50 mRNA
expression. Although high B-50 mRNA ex-
pression colocalizes with nerve growth factor
(NGF) receptor expression in uninjured dorsal
root ganglia, NGF does not change B-50 express-
ion upon axotomy [31], excluding it as the main
trigger for B-50 induction after injury. Factors
that can influence B-50 mRNA expression in
vivo after neuronal damage are glucocorti-
coids [32], cAMP after hypoxia [33] and
myelinization [34, 35]. These in vivo studies,
however, do not provide clear indications of
what molecule(s) are decisive for B-50 induction
and what is the underlying mechanism.

More information is available from in vifro
studies. In general, neuronal differentiation of
cells in culture induces B-50 expression at
mRNA and protein level [36-39]. Not all factors
that modulate neurite outgrowth, however,
also change B-50 expression (for instance elec-
trical activity [40]). It has been suggested that
in these situations the B-50 protein that is al-
ready present is modified. It seems that the
induction of B-50 mRNA expression is less de-
pendent on the sort of factor used to obtain
neuronal differentiation, since B-50 induction
has been demonstrated using NGF in sensory
neurons [38] and PC12 cells [41], IGF-I in SH-
SY5Y neuroblastoma cells [39], retinoic acid in
P19-EC cells [36] and DMSOQ in mouse N1E-115
neuroblastoma cells [42]. Possibly the factors
initiate a similar cellular mechanism of induc-
tion or alternatively increase B-50 expression at
a different level of transcription or translation.
Intracellular regulation

Several intracellular mechanisms of regula-
tion of B-50 expression has been reported.
Stimulation of PC12 or N1E-115 neuroblastoma
cells with low phorbol ester concentrations
stimulates B-50 mRNA levels, similar to that
observed with NGF, whereas down regulation
of PKC by addition of high phorbol ester con-
centrations prevents the NGF induced rise in
B-50 mRNA [42, 43]. In agreement with this
finding, TPA was found to increase B-50 mRNA
levels in the human neuroblastoma cell line
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SH-SY5Y [44] and to a lesser extent in another
PCI2 clone [45]. In the hybrid mouse neuro-
blastoma x rat glioma cells NG 108-15 a synerg-
istic effectof phorbol esters and dibutyryl cyclic
AMP (dbcAMP) was observed on B-50 mRNA
expression as well as neurite outgrowth [46]. The
upregulation of B-50 mRNA in Schwann cells
during demyelination is mimicked by forskolin
or dbcAMP [15, 47], suggesting that both PKC
and cAMP are intracellular regulators of B-50.
Transcriptional and post-transcriptional control

Direct analysis of B-50 transcription in iso-
lated nuclei from neonatal and adult cortex
showed that the developmental regulation of
B-50 expression is largely controlled at the tran-
scriptional level [9]. In PC12 cells the B-50
mRNA upregulation by NGF treatment and
down-regulation by corticosteroids cannot be
blocked by cycloheximide, indicating that
these two modulators have a direct action on
the B-50 mRNA expression. The inhibition of
B-50 mRNA expression by corticosteroids is by
a direct action on the basal rate of B-50 tran-
scription, whereas the effect of NGF is post-
transcriptional [48].

Detailed transcriptional analysis of develo-
ping brain cortex, NGF treated PC12 cells and
regenerating goldfish retinas demonstrated
that the change in B-50 mRNA levels was 5-10
fold higher than the change in the rate of B-50
transcription [49], indicating that B-50 mRNA
levels are determined by both transcriptional
and post-transcriptional mechanisms. Further
analysis of the stimulating effect of NGF on
B-50 mRNA levels showed that NGF increased
the stability of B-50 mRNA [41]. Unlike other
mRNAs regulated by stability, the induction
and stabilization of the B-50 mRNA is inde-
pendent of translation [43]. It has been sug-
gested that NGF-induced increases in B-50
mRNA expression are mediated via PKC acti-
vated mRNA stabilization independent of trans-
lation [43]. Recently, three brain cytosolic
RNA-binding proteins were found to interact
with the 3’ untranslated region (UTR) of B-50
mRNA [50]. The half-life of B-50 mRNA strongly
correlates to the presence of this 3' UTR region.

B-50 GENE STRUCTURE
AND PROMOTER ANALYSIS

The human and the rat B-50 gene are single
copy genes that span at least 50 kb and contain

3 exons (see for an overview Fig. 1) [51, 52]. The
first exon contains the 5' untranslated region and
encodes the first 10 amino acids, which contains
the membrane binding domain of the protein
[53]. The second exon encodes the bulk of the
protein and includes a calmodulin-binding and
a PKC phosphorylation site [34-57]. The third
exon encodes the carboxy terminus part of the
protein that contains an F motif for interaction
with cytoskeletal components [58] and contains
two polyadenylation signals [51, 59, 60].

The5' UTR of the ratand the human B-50 gene
are very homologous [51, 52, 60, 61]. At least
two different transcription initiation sites are
used, the most 5 is located —411 nt upstream of
the translation initiation codon, the most 3’ is
located at about -50 nt [51, 52, 60-62]. Extensive
probing of Northern blots containing 8 day old
rat brain mRNA and in vitro B-50 transcripts
demonstrated that two mRNAs can be distin-
guished of 1450 and 1650 bases in length.

Promoter analysis of the 5 UTR of the rat gene
by Nedivi et al. [52] indicated that the single
B-50 promoter is a 386 bp fragment located
directly upstream of the (GA)-repeat. This
“core promoter” drives the neuron-specific ex-
pression of a chloramphenicol acetyltransfer-
ase (CAT) construct in primary cortical
cultures. The (GT)- and the (GA)-repeat flank-
ing this core promoter stabilize the expression
of the promoter activity. The core promoter
could restrict gene expression to neural cells in
developing zebrafish [63]. Anadditional partof
the intron 1 sequence reduced ectopic express-
ion in transgenic mice [64]. In contrast to these
findings it was shown that in PC12, C6, and
Rat2 cells a much shorter fragment of 600 bp
flanking the start codon was sufficient for neur-
onal specific expression, while 230 bp restricted
expression to neural cells [65]. It was demon-
strated that in the rat B-50 gene there isa second
promoter region (P2) present in the 5' UTR,
located between -233 and -1 bp, directly up-
stream the start codon [61]. Transfection of this
promoter construct into differentiated P19-EC
cells was sufficient for a nearly complete neu-
rospecific expression of reporter gene [66].
Transcripts derived from P1 and P2 correspond
to the earlier described long and short tran-
scripts. Nothern blot analysis of early postnatal
rat brain revealed that most of the transcripts
are derived from P2 promoter activity [67]. In
the human B-50 gene similar promoter regions
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Fig. 1. Organization of the B-50 gene and the 5’ UTR.

The B-50 gene contains 3 exons represented by hatched black boxes, numbered 1, 2 and 3 and the minimal size of the
introns, derived from the papers of Nedivi et al. [52] and Grabezyk et al. [51], is indicated. In the mRNA the open reading
frame is represented by a hatched box and the 5" and 3’ UTR by an open box. The dashed lines represent exon borders
derived from literature, 5’ ends of the cDNAs were found at: 411 nt [52], =216 nt [59], —40 nt [56]; 3’ ends of the cDNAs
were found at: +1085 nt [56], +1208 [9], +1271 [59]. At the left top of the figure the position of promoters P1 and P2 with
their respective transcription starts, represented by arrows and the putative TATA box are depicted. At the bottom of the
figure, the modulators of B-50 mRNA levels as discussed in the section "Regulation of B-50 mRNA expression” are indicated.

have been described [62, 68], with a preference
for the short transcript [60]. The presence or
absence of the (GT)- and the (GA)-repeat did
not significantly influence the activity of either
P1 or P2. In vitro translation of B-50 in wvitro
transcripts mimicking those derived from P1
and P2 showed that P1 derived B-50 transcripts
are translated with very low efficiency in rabbit
reticulocyte lysates, when compared with tran-
scripts containing the P2 leader [67].

Taking together our data suggest that al-
though the B-50 gene has the potency to tran-
scribe two different mRNAs, only the ones
derived from P2, containing a short leader se-
quence, are actively transcribed in vivo and can
be translated in vitro, indicating that in vivo P2
is the most active B-50 promoter.

Expression of the B-50 gene is largely re-
stricted to neural cells and regulated by gluco-
corticoids and may be by estrogen.
Comparison of the 5’ UTR of both the human
and the rat B-50 gene revealed no known bind-
ing sites for previously described neural tissue
specific transcription factors, nor does it con-
tain glucocorticoid or estrogen response ele-
ments, although it does contain a sequence
motif that is common to several neural-selec-
tive genes [52]. The 5° UTR also does not con-

tain perfect consensus elements for immediate
early genes, cyclic AMP or protein kinase C
[52]. Several different explanations can be
given for the absence of consensus elements in
the known part of the B-50 gene, i.e. (i) the B-50
gene is not primarily responding to factors in-
ducing neuronal differentiation, but that the
expression of the gene is a secondary response;
(ii) the neural preferred expression is regulated
by elements present in the large introns; (iii) the
transcription of the B-50 gene is constitutive
and the neural preferred expression is due to
regulation of the mRNA stability; (iv) the ex-
pression of the B-50 gene is regulated by un-
known B-50 specific transcription factors
binding to sequences that are contained within
the regions of the gene thathave been identified
to direct B-50 specific transcription, i.e. P1
and/or P2.

POSTTRANSLATIONAL MODIFICATIONS:
CELL MORPHOLOGY, NEUROTRANSMIT-
TER RELEASE AND LTP

Several posttranslational modifications of B-50
have been described. The conservation between
species of several domains of B-50 that are in-
volved in these modifications imply their import-
ance in the function of the protein [69].
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One of the most characteristic sites of B-50 that
is subjected to posttranslational modification is
the so-called “GAP-module” [69]. This domain
spans 18 amino acids (31—40 in man) and has
been shown to bind calmodulin (CaM) at
amino acid 3941 [54]. Unlike other CaM-bind-
ing proteins B-50 bmds CaM only at relatively
low intracellular Ca®* levels [70, 71]. When
CaM is not bound to B-50, the S&ri site can be
phosphorylated by PKC both in vitroand in vivo
[55, 57]. Conversely, phosphorylation by PKC
can inhibit CaM binding [54, 70]. Another site
for PKC has been identified at [72]. This
site is less well conserved. Close to this second
PKC site, at Ser' 2, a potential casein kinase II
(CKII) phosphorylation site was found [73].
CKII phosphorylation of B-50 is only possible
when no phosphate group is present at the

pnsmun [74]. S100 was shown to inhibit
pl-u:sphorylatmn by PKC and CKII [75]. Gan-
gliosides could also mh:b:t phosphorylation,
but not the PKC site at Ser®! [76). Dephospho-
rylation of B-50 can be mediated by several
phosphatases in vitro, among which is the cal-
modulin-dependent phosphatase calcineurin
[77-79]. Proteolytic digestion of in situ phos-
phorylated B-50 resulted into the same phos-
pho-fragments as in vitro, indicating that this
phosphorylation site is used in vivo [80-82].

Asecond domain that is highly conserved and
presumably involved in several functional in-
teractions is the N-terminus, especially the first
10 amino acids. The two cysteines present at
position 3 and 4 are involved in membrane
attachment [83] possibly through palmitoyla-
tion [84]. In addition, several reports indicate
that this N-terminal domain is involved in in-
teraction between Gy, a GTP binding protein,
and B-50, both major components of the growth
cone membrane. B-50 has been shown to stimu-
late the binding of GTPYS to Gg. The interaction
between B-50 and Gy is located in the amino
terminal domain of B-50 (amino acids 1-24,
[85]). This domain is homologous to the cyto-
plasmic tail of G-linked receptors, and it was
therefore suggested that in the growth cone
B-50 mimics the cytosolic tail of transmem-
brane receptors thereby triggering an intracel-
lular second messenger system by stimulating
the binding of GTP to the a-subunit of Gy [85].
The interaction between B-50 and Gy is differ-
ent from that normally observed in G protein-
coupled receptors. B-50 enhances the release of

GDP from Gg, by increasing the initial rate of
GTPYS binding to Gy and by increasing the
GTPase activity. This B-50 effect is, however,
not blocked by pertussis toxin nor affected by
the G-protein By subunits or phospholipids.
Thus it was concluded that B-50 is a novel
guanine nucleotide releasing protein (GNRP)
[86]. The minimal B-50 N-terminal fragment
that is still active in stimulating the binding of
GTPYS to Gy is the 1-10 peptide. Mono-palmi-
toylation reduced and di-palmitoylation abol-
ished that activity of N-terminal peptides to
stimulate Gy. The same results were seen with
intact B-50 isolated from brain. These data sug-
gest that palmitoylation of B-50 controls a cycle
between membrane-bound, inactive B-50 and
cytosolic active B-50 [87]. Both forms of B-50 are
still subject to phosphorylation by protein ki-
nase C, indicating that phosphorylation and
calmodulin binding and the interaction with
the membrane or G-protein are regulated inde-
pendent mechanisms and may therefore serve
different functions in the cell [88].

Not all of the posttranslational modifications
have been demonstrated directly in in vivo ex-
periments. Many studies have made use of mu-
tant B-30 to disrupt physiological interactions.
Using these techniques a role for posttransia-
tional modifications has been implied in cell
morphology, transmitter release and long term
potentiation.

Cell morphology

Since B-50 is thought to be involved in neural
plasticity, numerous studies have investigated
the role of posttranslational modifications of
the protein in morphological changes of the
cell. It was found that after lesioning not only
the amount of B-50 increases, but also its phos-
phorylation by PKC [89]. During axonal
growth phosphorylation by PKC increases in
the vicinity of the target [90], possibly through
stabilization of the growth cone. In cultured
dissociated dorsal root ganglia (DRG)s the anti-
body specific for the phosphorylated form of
B-50 demonstrated that also in this culture
neuritogenesis begins in the absence of phos-
phorylated B-50. Increased B-50 phosphoryla-
tion correlated with a reduced extent of neurite
outgrowth. Motile growth cones contained
very low levels of phosphorylated B-50, where-
as stationary growth cones showed much more
immunoreactivity. Down regulation of PKC by
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phorbol ester prevented the phosphorylation
of B-50 thereby inducing growth cone collapse
[Qﬂ] Twu rat B-50 phusphurylatlon mutants
(Ser*! to Ala*! preventing and Ser’’ to Asp*!
mimicking phosphorylation by PKC) had
prominent effects on the cell morphology. Non-
neumml COS-7 and L6 cells transfected with
the Ser*! mutant that prevents PKC phospho-
rylation (Ala*!) spreaded poorly and contained
numerous filopodia, whereas cells that were
transfected with the PKC phosphorylation mi-
micking mutation spreaded extensively and
displayed large irregular membranous exten-
sions wlth llttle filopodia [91]. Recently, the
typical Ala*' mutant phenotype was confirmed
in B-50 deficient PC12 cells and attributed to the
uncoupling of plasma membrane and its under-
lying cytoskeleton [92]. The role of CaM in these
morphological changes of these B-50 mutant cells
is still unclear. In organotypic culture of a carp
eye CaM and CaMKII inhibitors prevented
dark/light morphological adaptation while af-
fecting the phosphorylation of B-50 [93].

Mutations of the first ten amino acids also re-
sulted in morphological changes. Both in the
nonneuronal COS-7 alti L&n-:lls an{l in PCIECE]]S
mutation of the.- C},rs C}rs into Ala’Ala* [91] or
into Ser’Gly* [83] prevented the association of
B-50 with the plasma membrane and the Golgi-
apparatus. Fusion of this N-terminal domain of
the B-50 genetoa [-galactosidase gene resulted
in membrama sorting [94], while mutation of
Cys’Cys* disrupted membrane targetting.

The direct involvement of G-protein in neur-
ite outgrowth has been studied in culture sym-
pathetic neurons. Electroporation of GTPBS
into these cells inhibits neurite outgrowth,
whereas introduction of GTPYS promotes neur-
ite formation. This implies that G protein
stimulation inhibits neurite formation [95]. G
protein-coupled receptors are involved in
growth cone collapse caused by solubilized
embryonic chick membranes or myelin compo-
nents [96]. Whether this is caused by G activa-
tion or mediated through another G-protein is
at present unclear, but the mechanism by which
this collapse is mediated is pertussis toxin sen-
sitive arguing against a role for B-50 in this
process, since the interaction of B-50 with Gg is
pertussis toxin insensitive [97]. Since B-50 and
Gy are the major components of the growth
cone and B-50 promotes neurite outgrowth
may imply that in the growing tip of the axon

B-50 is present in an acylated form, and there-
fore bound to the membrane in order to prevent
stimulation of Gy which would cause growth
arrest. Indeed, administration of N-terminal B-
50 peptides to dorsal root ganglion neurons
aggrevated the growth cone collapse induced
by myelin and serotonin [98].

Neurotransmitter release

The involvement of B-50 in neurotransmitter
release was suggested after the observation that
PKC-mediated protein phosphorylation is in-
volved in regulation of synaptic transmitter
release [99] and B-50 is partly associated with
synaptic vesicles [100]. In adult brain B-50 im-
munoreactivity was localized mainly in mona-
minergic systems [100-102). In the cerebellum
B-50 is absent from GABAergic neurons, but
involved in the outgrowth of the nonGABAer-
gic parallel fibers [103]. B-50 immunoreactivity
in the postnatal spinal cord is present in both
noradrenergic [104] and serotonergic neurons
[105]. Similarly in the postnatal adrenal gland
B-50 is expressed by noradrenergic, but not by
adrenergic chromaffin cells [106].

Molecular tools that prevent B-50 expression
in PC12 cells reduce the dopa mine release [107,
108]. The introduction of Ser”" specific, but not
C-terminal anubodles into permeated synapto-
somes inhibited Ca?*-induced noradrenaline
release [109, 110], demonstrating that the CaM
binding/PKC phosphorylation site is vital for
B-50''s functHon in release. Earlier studies, how-
ever, indicated that PKC, the main kinase phos-
phorylating B-50, is not important for steps in
release following the calcium trigger [111]. The
state of phosphorylation of B-50, determined
by both kinase (PKC) and phosphatase (calci-
neurin) activity, rather than its phosphoryla-
tion by PKC seems to be involved in
modulating neurotransmitter release, possibly
by modulating B-50's capacity to store CaM.
Long term potentiation

The role of PKC in the induction of LTP has
been well studied (reviewed by Pasinelli et al.
[112]). Tetanic stimulation in hippocampal
slices revealed an increase in phosphorylation
of several proteins, one of which has been
identified as B-50 [113]. Indeed, a correlation
between the phosphorylation of B-50 and LTP
has been established in several studies [5, 114-
117]. Since these earlier studies were performed
on post-hoc obtained material, a new technique
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was introduced to examine phosphorylation
during LTP in situ [118]. Using this technique it
was demonstrated that the phosphorylationstate
of B-50 raised transiently during inductionof LTP
in hippocampal slices and that the increase in
phosphorylation is highly correlated with the
increase in the evoked responses (EPSP) at each
time-point [119]. Long term memory induced by
training and ACTH was also preceeded by an
increase in B-50 phosphorylation [120].

CONCLUDING REMARKS

The function of B-50, as it was found in vive in
transgenic mice [7, 8] and in vitro in neuronal
and nonneuronal cell culture systems [91, 121],
has been specified to a mediating role in neurite
pathfinding during development and axonal
regeneration, and in neuronal plasticity pro-
cesses like transmitter release and LTP. Since
this function requires a tight spatial and tempo-
ral restriction of gene expression, the protein is
regulated by both transcriptional and posttran-
scriptional control. Regulation of the B-50 pro-
tein is controlled by two promoter regions for
gene expression, by regulation of mRNA sta-
bility in its 3' UTR region and by posttransla-
tional modifications.

The functional alterations of the B-50 protein
after posttranslational modifications indicate
that molecular interactions may play an im-
portant role in activation of B-50 dependent
processes. The translocation to the membrane
mediated by the two N-terminal cysteines was
shown to be essential in morphological changes
[83], implying that B-50 can only perform its
function when it is associated to the plasma
membrane. This also enforces the possibility
that G-protein interaction may be involved
[84]. In addition, extensive studies have re-
vealed that phosphorylation by PKC and CaM-
binding are decisive for most, if notall, of B-50's
plastic functions.
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