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The H-phosphonates and phosphoramidites of 2°-deoxyisoguanosine, 2'-deoxy-
isoinosine, 5-aza-7-deaza-2'-deoxyguanosine, and N1+methjrl-2‘-deuxyformycin A
were prepared. The diphenylcarbamoyl group was chosen for the 2-O-protection of
2'-deoxyisoinosine and 2"-deoxyisoguanosine, and dimethylaminoalkylidene groups
were used to block the amino function of the various monomers. The synthesis of
isoguanine oligonucleotides was found to be much more efficient using the
2-O-protected building blocks compared to those without oxygen protection.
Oligodeoxynucleotides containing 2'-deoxyisoguanosine and 2'-deoxycytidine form
parallel duplex structures. The self-complementary duplex containing 5-aza-7-deaza-
Y-deoxyguanosine and 2'-deoxycytidine forms a stable duplex in acidic solution (pH
= 5.0) while it is destabilized under neutral conditions.

Antisense oligonucleotides targeted to certain
segments within single-stranded regions of m-
RNA have conquered the center of DNA re-
search within the last few years [1, 2]. The
exploration and synthesis of novel oligonucle-
otide building blocks with modified bases is
important for the progression of this work.
Modified bases can form unusual base pairs,
may stabilize the DN A-duplex thermodynami-
cally, and can lead to oligonucleotides being
resistant to exo- and endonucleases [3, 4]. This
paper reports on the synthesis of four different
DNA building blocks derived from 2’-de-
oxyisoguanosine (1), 2’-deoxyisoinosine (2),
.-‘\."~methy]—2*-dmx}rfunnycin A (3), and 5-aza-
7-deaza-2'-deoxyguanosine (4). Two of them (1

and 4) form unusual base pairs. The com-
pounds 2 and 3 are fluorescent. For formulae
see Scheme 1.

RESULTS AND DISCUSSION

Base-modified building blocks for solid-phase
oligonucleotide synthesis

Phosphonates and phosphoramidites of 2'-deoxyiso-
guanosine and 2'-deoxyisoinosing

The 2-oxo groups of 2’-deoxyisoguanosine (1)
and 2’-deoxyisoinosine (2) are more reactive
than the 6-oxo groups of 2'-deoxyguanosine
and 2"-deoxyinosine ([5] and F.Seela & Y. Chen,
unpublished results). Therefore, the coupling

*Financial support by the Bundesministerium fiir Bildung, Wissenschaft, Forschung und Technologie is

gratefully acknowledged.

Abbreviations: DPC, diphenylcarbamoyl group; DPC-CI, DPC chloride; DMF, dimethylformamide; DMT,

dimethoxytriphenylmethyl; THF, tetrahvdrofurane.
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etficiency is low when 2'-deoxyisoinosine- or
2'-deoxvisoguanosine phosphoramidites are
used in oligonucleotide synthesis without
protecting the 2-oxo group [6, 7]. The coup-
ling yield of phosphonates is higher, but it is
still difficult to incorporate consecutive
residues into the growing oligonucleotide
chain. In order to improve the coupling vield
turther the 4-nitrophenylethyl group was in-
troduced as 2-oxo protecting group [8].
Nevertheless, protection and deprotection
procedures are laborious in this case. As the
diphenylcarbamoyl (DPC) group has already
been used for the 6-oxo group protection of
guanosine [9] it is now applied for the protec-
tion of compounds 1 and 2. The DPC group
has the advantage of great lipophilicity which
tacilitates chromatographic separation. The
group is also sufficiently stable under acidic
or basic conditions [9].

The reaction of 2*-deoxyisoguanosine (1) with
N.N-dimethylacetamide dimethv! acetal in

The diphenylcarbamoyl protecting group
was introduced into compounds 6a,b using di-
phenylcarbamoyl chloride (DPC-CI) /diisopro-
pylethyl amine in dry pyridine (8a,b). On an
alternative route compounds 5a,b were reacted
directly with DPC-CI vielding the derivatives
7a,b regioselectively (7a: 73%; 7b: 81%). The
half-lives of deprotection were 20 min for 7a
and 54 min for 7b (25% aq. NHj, 40°C). Sub-
sequent tritylation of 7a,b with (MeQ),TrCl
gave compounds 8a,b. Next, the phosphonates
9a,b and the phosphoramidites 10a,b were pre-
pared and purified by column chromato-
graphy. All compounds were characterized by
UV-, 'H-, BC-, and P'P-NMR spectra as well as
by elemental analyses. The ?C-NMR data are
summarized in Table 1.

Synthesis of NmeHryI—}_" -deoxyfornycin A

Formycin A (11) — a cytotoxic analog of
adenosine — shows strong fluorescence and
phosphorescence [11]. The X-ray analysis [12]

Table 1

13 NMR chemical shifts of 2'-deoxyisoinosine and 2'-deoxvisoguanosine derivatives in dg-DMSO at
303 K
- Y e - _ -
(Compd” €2 C4 . C5 C6°C8 CO NeC'cr cof co|ce! ey,
_3a_ 15361 1588 1236 1394 ; 1455 - = , 829! - 1709 879 | 617 }
ba 1559 1590 1236 1395:1457 - | - 824 - ! 705 | 855 | 642
7% 1555 1527 1329 1499 1462 1515 - 836 | - | 706 | 882 616 }
82 1556 1327 1329 1497 M6l 1515 - | 833 | - | 704 855 | es1 |
_%a__ (1556 1528 1330 1500 1459 1514 - | 837 - | 727 | 856 639 |
56" 15645 1570 1132 1536° 1401 - 1639 836 | - | 710 . 880 . 621 |
.6b 156811574 : 1152 ,1536° 1394 : - (1637 821 ! - | 707 | 855 643 |
76 1607 1419 ' 1239 1353° 1411 1515 1622 834 | - | 707 | 879 617
8b 160.9° 1420 1240 1557 1409 1517 1623, 829 | - 706 855 | 642 J
weSb 6087 1419 1239 115655° 140.5 1515 1622 830 - . 725 ! 855 637 |

*Purine numbering. ” From gated-decoupled spectm. “Teniative. "Sup:rimpase:l by DMS0.

methanol [10] afforded the amidine deriva-
tive 5b (90% yield). The latter as well as 2"-de-
oxyisoinosine (2 = 5a) were converted to the
5-O-dimethoxytrityl-derivatives 6ab using
standard conditions. For formulae see
Scheme 2.

demonstrated that it exhibits a special glyco-
sylic bond conformation (x = -110%; “high-
anti”). Poly(formycin A) [13] reveals inverted
ORD-specira relative to poly(A) from which a
left-handed helical sense of the polvnucleotide
chain was deduced. More recently 2"-deoxyfor-



48 F.Seela and others

1996

mycin A was incorporated into oligodeoxynu-
cleotides [14]. Ambiguous base pairing [15]
caused by the N(1)-H < N{2)-H tautomerism
was repurted [16] which can be nrcumvented
using N1 -methyl 2'-deoxyformycin A (15 =

The reaction of formycin A (11) with N .N- dl—
methylformamide dimethyl acetal (65°C, 14 h,
DMF} followed by hydrolysis with conc. NH;
aq. (room temp., 3 days) re*;ulted in an almost
quantitative formation of N' -methylformycin
A (12) [17]. The reaction follows a mechanism

N
'l*':’ T W @ MeNCH(OMe),
N (i) NH,

98%

Scheme 3

of intermolecular transmethylation [18]. Con-
densation of compound 12 with 1,3-dichloro-
1,1,3,3-tetraisopropyldisiloxane in pyridine (20
h, room temp.) gave the 3',5'-O-protected deri-
vative 13 in 60% yield [19]. Subsequent treat-
ment of 13 with phenoxythiocarbonyl chloride
in the presence of N, N-dimethylaminopyridine
(MeCN, Ar, 20 h, room temp.) gave the 2'-0O-
phenylthiocarbonyl derivative 14 in 70% vield.
The latter was deoxygenated (Bu;SnH, AIBN,
toluene, Ar, 75°C, 4 h) and desilylated (BuyNF,

HccHzCM’P‘“HuPrh

18
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1 M in THF, 75°C, 2 h) affﬂrdinglcrystalline 15
(m.p. 220-222°C (EtOH)). 15: 'H-NMR (d¢-
DMSO): 8, 8.11(s, H-5); 740 (br. s., NHy); 5.70
(m, H-1"); 5.32 (t, 5-OH); 5.04 (m, 3-OH); 4.34
(m, H-3"); 4.19 (s, CH3); 3.88 (m, H-4'); 3.58 and
348 (m, Hp-5'); =2.5 (m, Hp-2'); 2.02 (m, Hg-2').

The Michaelis-Menten consta nts for the enzy-
matic deamination of N' -methyl-2'-deoxyfor-
mycin A (15) were measured (K, = 800 pM;
Vmax =30 mM/min-mgof enzyme =0.25 mM/
min-unit). Despite the fact that the enzymic
deamination is slow [20], compound 15 (10 mg,
H,0, 12 h, 3?“ C, 100 units) was converted into
crystalline N -methyl-2"-deoxyformycin B (16)
on a preparative scale (m.p. 200-202°C (EtOH-
H,0, 1:1)). 16: 'H-NMR (dg-DMSO): 8, 7.86 (s,

Phosphonates and phosphoramidites of 5-aza-7-deaza-2'-
deoxyguanosine

5-Aza-7-deaza-2"-deoxyguanosine (c'z°Gg,
19 = 4, Scheme 4) has been synthesized in our
laboratory in 1987 [22]. The normally stereo-
selective glycosylation leads to anomeric
mixtures when the anion of 2-isobutyrylami-
no-8-H-imidazo[1,2-a]-s-triazin-4-one is gly-
cosylated with 2-deoxy-di-O-(p-toluoyl)-a-D-
erythro-pentofuranosyl chloride [22]. The nu-
cleoside 19 shows a pK value of protonation
(pK = 3.5) which is similar to that of deoxy-
guanosine (3.7) [23].

5-Aza-7-deaza-2"-deoxyguanosine (19 = 4)
was reacted with 4,4'-dimethoxytriphenyime-

Table 2
'3C-NMR data of Nl—meihyfformycfn derivatives in dg-DMSO at 303 K
{Compd® €3 ' C3ai €5 | C? |C7a|Cr | c2 |l cy | ca | o5 | CHs
L 11, 1432 1383 1514 , 1516 ' 1234 | 782 | 753 | 726 | 861 | 626 | - |
|12 | 1420 ' 1402 | 1510 | 1512 . 1220 | 781 | 750 | 723 | 860 | 626 | 40.
{ 13 1412 1406 1 1513 1510 | 1217 | 726 | 740 | 789 | 803 | 620 | 386 |
Lo | 1403 . 1394 | 1516 | 1510 | 1218 | 857 757 | 716 | 807 | 612 | 389
L 15 | 1428 i_]-’mﬂ 1510 | 1512 1221 , 739 v 731 | 883 | 628 | 400 |
! 16 | 1439 | 1369 | 1432 | 1536 1265 | 731 . ° | 728 | 881 | 627 | 389 |

“Systematic numbering. "Superimposed by DMSO.

H-5); 5.28 (dd, ] = 10.4, 5.7 Hz, H-1"); 5.07 and
4.99 (2 x OH); 4.30 (m, H-3'); 4.15 (s, CH3); 3.83
(m, H-4); 3.52 (m, H»-5"); =2.5 (m, Hg-2"); 2.03
(m, Hg-2"). Standard reacnnn conditions can be
used fﬂl‘ the conversion of N'! -methyl-2"-deoxy-
formycin A into the phosphonate 17 and the
phosphoramidite 18 (Scheme 3).

All compounds were characterized by 'H- and
13{.‘~NMR [21], as well as by mass spectra (for

C-NMR data, see Table 2). Upc:-mntmduchon
of the silyl clamp (13) only the '*C-NMR signal
of C-3' but not that of C-53" is affected. The
2'-deoxynucleoside 15 shows intensive fluores-
cence in water with a broad excitation maximum
at 300 nm and an emission maximum at 335 nm
(shoulders at 325 and 350 nm).

thyl chloride (pyridine, room temp., 3.5 h) to
yield the 5-0O-DMT-derivative 20 (57%). Sub-
sequent protection of 20 with N,N-dimethyl-
acetaldehyde dimethyl acetal gave the di-
methylaminoethylidine derivative 22 which
was not isolated but converted directly into the
phosphonate 24 (PCl3/N-methylmorpholine /
1,2,4-triazole) (Scheme 4). Also the phosphor-
amidite 23 can be prepared from 22, Alterna-
tively, the 5-O-DMT-protected 20 was con-
verted into the 3-phosphonate without prior
protection of the amino function {_}21} Ail
mm unds were characterized by 4, ¥e.,

TP-NMR spectra. Table 3 summarizes the
e C-NMR data,
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Table 3
BC.NMR chemical shifts of 5-Aza-7-deqza- Ev:imxygummaumm de-DMSO ai 303 K
| Compd®! C4  C8a . r_'! . 7 __k_h-ﬁ ot _Cz C3 _C¥4 | C5 | CHs
—--19 1634 1502 | 150.1 1142 1084 877 388 706 _ 828 616
20 1649 _ 1502 1497 1141 1083 . 856 | 386 | 701 | 826 | 639 | -
21 [ 1653 | 1504 1499 1137 1084 | 856 376 _ 723 827 | 637 . -
L.24 | 1620 ; 1502 1499 | 1151 1081 | 856 ' 379 , 721 . 831 : 636 . 160

* Systematic numbering,
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Oligonucleotides

Oligonucleotides containing 2'-deoxyisoguanosine

The DPC-protected phosphonate 9b as well as
the phosphoramidite 10b were used for solid-
phase oligonucleotide synthesis. Oligonucleo-
tides such as 26 or 27, containing consecutive
1Gy-residues, were only accessible by using
building blocks with oxygen protection such as
9b or 10b.

5'- d(iGCIGCIGC) §- d{iGIGIGCCC) §'- d[CCCIGIGIG)

25 26 27

The self-complementary oligomer 25 shows
cooperative melting with a ¢, of 32°C (8.4 uM
of single strands, 1 M NaCl, 0.1 M MgCl,, 60
mM Na-cacodylate buffer, pH 7.0). When the
oligomers 26 and 27 were hybridized a ¢, value
of 46"C was observed. As both individual oli-
gonucleotides exhibit only low iy, values (26:
17°C; 27: 16"Q) it can be concluded that a par-
allel orientated duplex 26-27 is formed.

Oligenucleotides with 5-aza-7-deaza-2'-deoxyguancsing
As mentioned earlier unusual base pairing
was expected for compound 4 with 2'-deoxycy-

tidine. For this purpose the oligonucleotide 28
was synthesized and duplex formation with 30

]
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was studied. For comparison the oligomer 29
was prepared.

5. (T 2°G-Ty)
28

- d(TGTy)
28

5'- d{AsCAs
30

The oligomers 28 and 29 were hybridized
with an equimolar amount of the oligonucle-
otide 30 (5 uM single strand concentration).
Next, the duplex stability was studied as a
function of the pH using 10 mM Na-cacody-
late, 10 mM MgCl,, 100 mM NaCl at pH 5.0,
6.0, 7.0, 8.5, and 9.5 (not shown). In all cases
cooperative melting profiles were observed.
Figure 1A shows a graph of t,,, values of the
modified duplex 28-30 plotted against the pH
value of the solution. Figure 1B displays the
graph for the parent duplex 29-30. The tp,
values of the non-modified duplex are almost
independent from the pH (5.0-9.5) while the
tm values of the modified duplex increased
from 22°C to 35°C when the pH value was
decreased (9.5 to 5.0) [24]. At low pH the ty,
value of 28-30 is similar to that of the non-
modified duplex 29-30. The inflection point
(7.7) of this graph represents the pK vaiue of
the modified base within the oligonucleotide
chain (Scheme 3).
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Fig. 1. tm Values of the duplex 28-30 (A) and of 29-30 (B) as a function of pH.
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