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Recent advances in application of molecular biology to studies on learning and
memory formation suggest that understanding of these seemingly elusive phenomena
may be within our reach. This mini-review summarizes the present knowledge on
activation and possible functions of transcription factors in learning processes with a
focus on studies performed in the author’s laboratory.

Gene expression, protein biosynthesis and lear-
ning-related phenomena

The neural mechanisms of learning and
memory are under intensive multidisciplinary
study involving an integrative approach based
on molecular biology, cell biology, pharmaco-
logy, electrophysiology and behavior. The pre-
valent working hypothesis is that memory
formation requires modulation of the connec-
tivity of specific synapses in particular brain
regions [1, 2]. Despite major scientific efforts
made over the last three decades, the molecular
bases underlying learning phenomena still re-
main largely elusive, although it has been pro-
posed that the cascade of molecular processes
critical for memory formation involves:
~1. activation of receptors for neurotransmitters,

neurotrophins and cell adhesion molecules,
—ii. formation of intracellular and intercellular
messengers,
—-1il. gene expression,

-iv. synthesis of membrane glycoproteins
which, when inserted into synapses, may in-
fluence their efficacy.

It is becoming increasingly clear that long
term memory formation involves specific gene
expression [3-9]. Central to explanation of this
phenomenon is the role of transcription factors
(TF), controlling gene expression.

The role of gene expression in learning pro-
cesses or, more generally, neuronal plasticity,
has been postulated repeatedly, and well do-
cumented since seminal studies published in
early sixties. At that time it was shown that
inhibitors of protein biosynthesis (puromycin,
cycloheximide, anisomycin), and then also in-
hibitors of RNA synthesis (actinomycin D)
blocked long term memory formation, if in-
jected into the brain (see [3, 10]). These studies
were not, however, without their critics, rightly
pointing out that these drugs influenced the
well being of the animals, clearly impairing

Abbreviations used: AP-1, activator protein 1, a transcription factor; CREB, cyclic AMP responsive element
binding protein(s), a transcription factor; LTP, long term potentiation of synaptic efficacy; NMDA, N-meth-

yl-D-aspartate; TF, transcription factor.



222 L. Kaczmarek

1995

their behavioral performance. More recent de-
velopment of in vitro models enabling studies
of neuronal plasticity confirmed, however,
those initial observations under conditions
where well being of the subject could not be
considered as a factor [3, 5].

Precise investigations onto effects of the in-
hibitors on neuronal plasticity showed that
there are two clear time-windows during
which treatment with the inhibitors is effective,
i.e. at the time of training and then several
hours later. Inhibition of protein biosynthesis,
e.g., a couple of hours after the training session
does not interfere with memory formation {7, 8].

c-Fos protein in long term cellular responses

Since middle eighties, several investigators,
including ourselves [11-16] have suggested
that long term phenotypic changes, based on
reprogramming of gene expression, involve in-
duction and activity of certain regulatory
genes, such as nuclear protooncogenes (seee.g,,
[17,19]). Aithough all of these genes seemed to
be quite ubiquitously expressed inawiderange
of biological phenomena, the question arose
whether their protein products (later shown to
be bona fide transcription factors) might serve a
regulatory role controlling the expression of
genes specific to those phenomena [5, 11, 13-
16]. For instance, proteins of the Jun family
(c-Jun, Jun B, Jun D), together with proteins of
the Fos family (c-Fos, Fos B, Fra-1, Fra-2} form
a transcription factor AP-1, known to influence
the expression of a number of genes.

The physiological regulatory role of c-fos and
AP-1 has been shown to be critical in certain
experimentally amenable cellular responses
like cell cycle [19] and B-endorphin release from
pituitary neurons in culture [20].

Activation of c-fos in nerve cells

Possible involvement of c-fos in long term
physiological responses of nerve cells
prompted numerous researchers to study the
role of various neurotransmitters in ¢-fos activa-
tion. These studies have repeatedly shown that
glutamate (a major excitatory neurotransmitter
in the mammalian brain) acting through iono-
tropic receptors, the NMDA (N-methyl-D-as-
partate} receptor in particular, comprises a
major, though not exclusive, pathway for ¢-fos
activation (for review see [21]).

During our own studies on neuronal cultures
[22-24] we have shown that L-glutamate acti-
vates the AP-1 DNA binding activity, as well as
expression of zif 268 (another gene encoding a
transcription factor) through activation of both
NMDA and non-NMDA ionotropic L-gluta-
mate receptors, but apparently not through
metabotropic receptors [23]. On the other hand,
L-glutamate failed to activate DNA binding ac-
tivities of other transcription factors tested, in-
cluding CREB, NF-«B, AP-2, SP-1 [24].

We have confirmed these results in vivo, using
epileptogenic stimulations (pentylenetetrazole
or kainate), believed to involve L-glutamate re-
ceptors [25, 26]. The importance of these studies
is underscored by the well established fact that
Ca”* influx subsequent to L-glutamate (in par-
ticular NMDA) receptor activation regulates
c-fos expression [27, 28] as well as it is a prereq-
uisite for long term memory formation for vari-
ous tasks [29, 30], see also [31, 32].

c-fos in learning-related phenomena

Guided by the aforementioned data and the-
oretical considerations, we have initiated
studies on the expression of ¢-fos in learning
phenomena. At the beginning, we found that
multiple trains of the perforant path high fre-
quency stimulation leading to long lasting long
term potentiation (LTP) of the synaptic respon-
ses in the granule cells of the hippocampal
dentate gyrus, regarded as an electrophysio-
logical model for neuronal plasticity, provoked
accumulation of c-fos mRNA. Low frequency
stimulation (not leading to LTP) did not have
this effect [33]. Several other research groups
also reported increased TFs' gene expression
following induction of long lasting LTP (for
review and discussion of some discrepancies
see [34]). '

We have also found that there is a dramatic
increase of mRNA levels of c-fos, as well as of
zif 268 in the parieto-occipital cortex and cere-
bellum of the rat brain, following acquisition of
a 2-way active avoidance reaction, with a com-
pound visual and auditory conditioned stimu-
lus [35, 36]. Interestingly, performance of
already learned behavior by itself was unable
to elicit c-fos activation [35, 36]. We have also
reported that acquisition of copulatory beha-
vior in male rats correlates with elevated c-fos
expressionin therat sensory cortex [37]. Similar
findings of learning-related accumulation of
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c-fos, c-jun, jun B and zif 268 mRNAs and pro-
teins have also been reported by others (for
review see [6] and also [38—42].

Transcription factors in learning processes: ex-
pression and function

The fact that elevated expression of genes
coding for transcription factors correlates with
learning prompted us to ask whether activation
of transcription factors themselves may follow.
Using electrophoretic mobility shift assay (see
e.g. [43]) we have recently obtained data that
the AP-1 DNA binding activity, reflecting the
functional form of transcription factor, and not
just the level of mRNA or protein, does indeed
increase significantly after a single session of
two-way active avoidance training, and not
much after long term training (Lukasiuk, K,
Nikolaev, E. & Kaczmarek, L., submitted to
publication).

Recent functional studies with transient or
permanent blocking of AP-1 components fur-
ther support a role of this transcription factor
in learning-related phenomena. In particular,
c-fos anti-sense oligonucleotides have been re-
ported to block acquisition of long term mem-
ory for passive avoidance in chicks (Rose et al,,
personal communication). Similarly anti-c-jun
as oligonucleotides were found to disrupt ac-
quisition of the brightness discrimination reac-
tion in rats [41].

It has been also shown that genetically engin-
eered mice [44], lacking c-fos gene, display
learning disabilities [45]. Unfortunately, they
were accompanied by other behavioral abnor-
malities thus is was impossible to clearly distin-
guish between the two sets of phenomena.

More precise results were obtained with
CREB (cAMP responsive element binding pro-
tein, a transcription factor activated by protein
kinase A). The role of CREB in long term neur-
onal plasticity has been strongly suggested by
the data collected with invertebrate systems as
well as LTP and regulation of circadian clock in
mammals [46-52]. Using CREB-lacking mice
Bourtchaladze et al. [52] were able to show that
these animals may develop memory lasting up
to 1.0-1.5 h, but not for a longer time. These
results were interpreted as indicating that a
specific transcription factor, like CREB, may
control long- but not short-term memory for-
mation.

A hypothesis: Neuron’s nucleus as an informa-
tion integration device in learning processes

On the basis of the above considerations as
well as the repeatedly, demonstrated fact that
learning in general, and consolidation of mem-
ory trace in particular, requires co-operation
between several neurotransmitters and neuro-
modulators, acting through specific receptors
[53-56], we have suggested that long-term
memory formation could involve activation of
transcription factors and, in consequence, ex-
pression of downstream “effector” genes in
learning. These genes could code for proteins
involved in strengthening of synaptic efficacy.
According to this hypothesis regulation of ex-
pression of “effector genes” should be driven
by simultaneous co-activation of a group of
TFs, driven by different neurotransmitter/re-
ceptor systems [6, 57]. In this way, the regula-
tory promoter and enhancer regions of

“effector” genes could act as molecular coin-

cidence detectors in learning processes, provid-
ing a tool to integrate information.

Advocatus diaboli: gene expression in neuronal
plasticity — maintenance, replenishment or re-
gulation?

The reasoning, presented above was focused
on the data supporting theidea of gene express-
ion playing a regulatory role in learning pro-
cesses. However, it is also worthwhile to
discuss major criticisms of this concept. There
are at least two explanations, other than regu-
lation, for the necessity of gene expression in
learning, or more generally in neuronal plas-
ticity. First, and an apparently most obvious
one, can be termed neuronal maintenance. Every
living cell requires gene expression to make up
for the proteins lost during physiological meta-
bolic turnover. Learning-disruptive effects of
protein and/or RNA synthesis inhibitors could
be explained by this notion. However, this still
does not provide a good explanation for the
specific training-related time-windows, in
which the inhibitors operate, as well as for the
learning- (or plasticity) evoked enhancement of
gene expression.

The second possible explanation can be de-
scribed by the word replenishment. In all of the
situations when elevated gene expression
correlated with phenomena of neuronal plas-
ticity (studied with the aid of more or less
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physiological learning models) was observed a
massive neuronal activation. This seems to be
also true for behavioral training. It is conspicu-
ous that tasks based on aversive conditioning,
rather than appetitive conditioning, were
shown to provoke elevated gene expression.
The opposite examples, like acquisition of sex-
ual proficiency, are still a point of debate to
what extent they are indeed learning phenome-
na. During the aforementioned massive neuro-
nal activation, there is a massive release of the
content of synaptic vesicles as well. It can be
thus suggested that replenishment of this con-
tent is a reason for the subsequent gene express-
ion. No wonder then that the genes coding for
the synaptic release machinery and content
were suggested to be stimulated as a result of
enhanced activity of transcription factors [58].

Closer scrutiny of the functional studies sug-
gesting involvement of transcription factors in
learning can also reveal their weaknesses. In
particular, the time course of the learning defi-
cits observed in CREB mutants by Bourtcha-
ladze et al. [52] (later than 0.5 h or 1.0 h, but
sooner than 1.0-1.5 h) is difficult to reconcile
with other data suggesting that gene express-
ion is required for formation of memories last-
ing at least 3—4 hours [7, 8, 59]. Hence, results
of these studies may be alternatively explained
by down-regulation of pre-existing TF leading
to inhibition of proper maintenance of neuronal
functions, rather than by blocking of learning-
evoked formation of the TF. Similarly, Tisch-
meyer et al. [41] have recently shown that
down-regulation of c-Jun with specific anti-
sense oligonucleotides disrupts the acquisition
phase (as opposed to formation of along lasting
memory trace) of the brightness discrimination
reaction inrats as well. Again, these results may
imply that down-regulation of ¢-Jun interferes
with basal functioning (maintenance) of brain
cells, preventing them from modifying synap-
tic connections even for a short time — a phe-
nomenon impossible to imagine to be gene
expression-dependent.

In conclusion, in our opinion, it is impossible
to refute the replenishment hypothesis, al-
though there is no data to give up the idea of a
regulatory role of gene expression, either. Ob-
viously, possible co-existence of all three (main-
tenance, replenishment, regulation) molecular
mechanisms of neuronal functioning in plas-
ticity-related phenomena makes the experi-

ments aiming to resolve this issue more diffi-
cult. Clearly, it is an exciting area of research in
which recent developments lead to the belief
that solving of the problem of molecular biol-
ogy of learning processes is within our reach,

I would like to express my deep gratitude to
my numerous colleagues for their enthusiastic
involvement in the experiments we have car-
ried out together, as well as to the present mem-
bers of the group also for critical reading of the
manuscript.
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