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Translation of the codons in mRNA requires
the presence of protein factors, GTF, a sulf-
hydryl compound and various cations. The
two protein factors required for polypeptide
chain elongation with rat liver preparations
have been designated [1, 2] as aminoacyl trans-
ferase I (elongation factor 1; EF-1} and ami-
noacyl transferase II (elongation factor 2; EF-2);
they are analogous to factors designated T and
G, respectively, from E. coli [3, 4] and have been
recognized in many other cells and organisms
[5 - 7). Studies with highly purified transia-
tional factors and with cell-free systems that
translate a variety of mRNAs provide insight
into the exact roles of translational factors, the
regulatory mechanisms that affect protein syn-
thesis at the level of these factors, and into
essential features of mRNAs that affect their
interaction with the translational machinery.

In elongation process, EF-1 is responsible for
the aminoacyl-tRNA binding to the ribosomes,
while EF-2 catalyses the translocation of pepti-
dyl-tRNA from site A to site P on the ribosome.
Peptidyl transferase is an enzyme integrally
bound with ribosomes, it participates in the
transfer of peptidyl-tRNA from P site to A site
and catalyses peptide bound formation. It has
been recently suggested [8] that the 23 S riboso-
mal RNA participates in the peptidyl transfer-
ase function. Our studies were performed on
the elongation factors (EF-1 and EF-2) isolated
from Guerin epithelioma and rat liver cells.
Guerin epithelioma is one of the most malig-
nant experimental tumours, and is used in tests
for new chemotherapeutics.

FELONGATION FACTOR 1 (EF-1)

The main function of elongation factor 1 (EF-
1) is to bind aminoacyl-tRNAs to the acceptor
site A on the ribosome. Binding of the ami-
noacylHRNAs (other than the initiator Met-
tRNA), in eukaryotic chain elongation, re-
quires the intermediary formation of a ternary
complex between the aminoacyl-tRNA, GTF,
and the binding factor EF-1.

The first information on the muitiple forms of
EF-1in eukaryotic cells was supplied by Shneir
& Moldave [9]. The heterogeneity of eukaryotic
EF-1 was also described by Collins et al. [10]
and others [11 - 16]. On the basis of these infor-
mations it seems that at least two multipie
forms play a specific role in polypeptide chain
biosynthesis. Two complementary factors,
named EF-1ee and EF-1f, were isolated from
pig liver by the Japanese group of Dr. Kaziro
[17]. EF-1at is the subunit that participates in
formation of the ternary complex [18 - 22], via
formation of a binary complex with GTP [20 -
25]. It binds GTP and the resulting binary com-
plex reacts then with aminoacyl-tRNAs to form
a ternary complex; this complex binds to and
delivers the aminoacyl-tRNA to the ribosomal
particle [16, 26 - 28], GTP is hydrolysed [16, 21,
29], EF-10.e GDP is formed [16], and the factor
is released from the ribosome [28]. The other
subunit EF-1f, catalyzes the GDP/GTP ex-
change on EF-1a[15,30-33]. Thus, amodel can
be proposed according to which EF-1f reacts
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with the EF-10.¢ GDP complex, displacing GDP
and forming an EF-1ace EF-1f binary complex;
then GTP displaces EF-1pB resulting in forma-
tion of an EF-10t¢ GTP complex which can bind
another aminoacyl-tRNA.

Isolation of the elongation factors from rat
liver and Guerin epithelioma was previously
described [34 - 37]. In turn, the EF-1 preparation
from Guerin epithelioma was separated into
three heterogeneous fractions, EF-1A, EF-1B
and EF-1C, while EF-1 isolated from rat liver
cells was separated into two fractions only, EF-
1A and EF-1B(C) [36). EF-1 from rabbit reticu-
locytes dissociates into three subunit forms, too
{38]. The cross-experiments showed that EF-1A
from the tumour cells was stimulated by EF-1B
and EF-1C, but EF-1B and EF-1C were not mu-
tually stimulated [36].

Our preliminary results [36, 37] allowed to
conclude that the EF-14, isolated from Guerin
epithelioma cells, corresponds to the light form
of EF-1 from other animal tissues. EF-1B was
suggested to be an unidentified aggregate. It is
commoniy known that EF-1 in the tissues ap-
pears mainly in aggregates {13], the dimen-
sions of which differ with the kind of the tissue.
Fraction EF-1C was thermostabile and stimu-
lated the activity of the free EF-1A added to the
elongation system [37].

Next, the components of the EF-1B aggregate
were identified [39). The subunit EF-1A was
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not adsorbed on DEAE-Sephedex A-50 column
and it was obtained in a free form (Fig. 1 B, b).
The homogeneous EF-1A was also obtained
after dissociation of the EF-1B aggregate in the
presence of GTP [40]. The EF-1A subunit form
is functionally similar to EF-1o (eukaryotes)
and EF-Tu (prokaryotes).

EF-1B was eluted from DEAE-Sephadex col-
umn as the main peak (Fig. 1A) and it was
markedly more active in polyphenylalanine
synthesis than fraction EF-1A. It was shown
that EF-1B consist of at least three polypeptides
(Fig. 1B, c.); one of them is EF-1A, while the
other two bands may correspond to EF-1fy.
EF-1B seems to be an aggregate similar to EF-
1H [39], which is known to be a complex of
EF-1c with EF-18(By) [41 - 43).

From the fraction not adsorbed on CM-Sepha-
dex C-50, at pH 8.0, a preparation designated
EF-1B’ was obtained. It was active in.polyphe-
nylalanine synthesis and stimulated this pro-
cess when added to the EF-1A containing incu-
bation mixture {44].

Autophosphorylation of aggregates EF-1B
and EF-1B’ from Guerin epithelioma

EF-1B and EF-1B’ are aggregates containing
both subunit forms: EF-1A and EF-1C, and
other polypeptides (Fig. 2, lanes a, ¢).
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Fig. 1. The separation pattern of EF-1 from Guerin epithelioma cells on DEAE-Sephadex A-50 column (A)
and electrophoresis of the active peak fractions EF-1A and EF-1B in 10% polyacrylamide-gel with 0.1% SDS

(B) (after [39]).

Designations A: (@), Polyphenylalanine synthesis, ["C]phenylalanine incorporated (pmoles per 50 pl of each fraction);
{x), absorbance. Designations B: a, markers; b, EF-14A; ¢, EF-1B.
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EF-1B and EF-1B’, but not EF-1A, can undergo
autophosphorylation [44], (Fig. 3). EF-1B and
EF-1B’ are aggregates containing protein ki-
nase activities and are phosphorylated without
addition of the enzyme. On Fig. 2,lanes a, ¢, @',
¢’ it can be seen that EF-1B differs from EF-1B’
in polypeptide composition. The autoradio-
graphic picture shows that, in EF-1B’ two poly-
peptides {(of approx. 32 kDa, corresponding to
EF-1B and of approx. 90 kDa) were phosphory-
lated (Fig. 2, lane a’), while in EF-1B only the
polypeptide (of approx. 51 kDa, corresponding
to EF-1v), was phosphorylated (Fig. 2, lanes ¢/,
d’). EF-1A and EF-1C individually, are unable
to become autophosphorylated and they can
not phosphorylate other polypeptides. This is
in agreement with the suggestion of Janssen ef
al. [45], that the protein kinase phosphorylating
EF-1f is a protein integrally bound to this fac-
tor, but is not its functional subunit.

Protein kinase {(CK II} was found to be the
enzyme responsible for autophosphorylation
in the EF-1B’ preparation. Heparin, a specific
inhibitor of CK II [45, 46], distinctly inhibited
autophosphorylation of EF-1B’ (Fig. 4, Fig. 2,
lane b’).

The kinase, present in EF-1B has not been
classified. It was only shown that the histone
H2A can serve as a substrate of the enzyme

Elongation factors

Fig. 2. Polyacrylamide-gel electrophoresis with SDS
and autoradiography of the autophosphorylated
preparations of EF-1B’and EF-1B (15 pg of protein).
Electrophoresis, lanes: a, EF-1B’; b, EF-1B* with heparin (2
ng); ¢, EF-1B; d, EF-1B with heparin (2 pg). Autoradio-
grams, lanes: a’, EF-1B'; ', EF-1B’ with heparin; ¢/, EF-1B;
d’, EF-1B with heparin.

responsible for autophosphorylation of EF-1B

(Fig. 5).

Polyphenylalanine synthesis was decreased
when autophosphorylated EF-1B” was used
[44). Such an effect was not observed in the
presence of autophosphorylated EF-1B, even if
one component of EF-1B was phosphorylated.

In the process of autophosphorylation of EF-
1B, its subunit form EF-1C was probably modi-
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Fig. 3. Autophosphorylation of the subunit forms of
EF-1 from Guerin epithelioma (after [44]).

(O), EF-1B; (@), EF-1B’; (W), EF-1A, Autophosphorylation
was carried out according to the phosphorylation
procedure but without addition of protein kinase,
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Fig. 4. The effect of heparin on autophosphorylation
process of EF-1B (O) and EF-1B'(@).

fied and inactivated. [32P]EF-1C was unable to
form the EF-1A «EF-1C intermediary complex
and formation of EF-1A¢GTP active complex

was stopped (Scheme 1).
EF-18'
GDPqNH\\
O
. g,f.‘.'
[32p] Ep-1c 3
inactive =
A
o
protein \
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EF-1C + [{-32é]ATP
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Histone H2A (ug)

Fig. 5. Phosphorylation of histone H2A by the prep-
arations of EF-1B’ (O) and EF-1B (@).

and by two dimensional SDS-PAGE/IEF elec-
trophoresis [40). The 32 kDa peptide may bea
homologue of EF-1B, while the second one of
51 kDa could correspond to EF-17 of other eu-

GTP
\> EF-1C
EF-1A + GTP

< pribosome
4 aminoacyl-tRNA

ribosome -
+ Pi

aa-tRNA

Scheme 1. The inhibitory effect of EF-1B’ autophosphorylation on formation of the active EF-1A«GTP

complex (after [44]).

Purification and characteristics of the EF-1C
subunit form

EF-1C was shown to be the factor responsible
for the GDP/GTP exchange in the EF-1AeGDP
complex. We tried to isolate EF-1C from the
EF-1B preparation, consisting of the subunit
forms EF-1A eEF-1C. This complex was disso-
ciated in the presence of GTP [41] with some
modifications [40]. EF-1C was resolved into
two polypeptides after reversible denaturation
in 6 M urea according to [47, 48]. The results
were confirmed by SDS-gel electrophoresis

karyotic cells.

In Guerin epithelioma cells EF-1C is present
probably in aggregate with EF-1A. High tend-
ency to aggregation of the subunits EF-1A and
EF-1C of the elongation factor 1 from Guerin
epithelioma suggests some analogies with the
early developmental period of the lower euka-
ryotic organisms [49, 50), in which EF-1 exists
as a high molecular complex EF-1H. EF-1H,
during the growth season, is transformed to the
light form EF-1L (EF-10)). However, EF-1H has
low activity and it represents some kind of
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storage form of EF-1L, which can be activated
only when separated from other proteins. On
the other hand, EF-1 isolated from Guerin epi-
thelioma was highly active in all aggregate
forms.

EF-1C from rat liver did not show any tend-
ency to aggregate with EF-1A, so it can be iso-
lated without the GTP-dependent dissociation
step (not shown). EF-1C in these cells can exist
in the free form or it can be aggregated with
other proteins, which is in agreement with the
reports from other laboratories [32, 41, 48, 51,
52].

The results of EF-1C participation in the ex-
change of GDP to GTP in the EF-1A ¢«GDP com-
plex were presented and it was found that the
32 kDa polypeptide stimulated the GDP/GTP
exchange, while the 51 kDa polypeptide was
inactive in this process [40].

The hydrophobic character of the latier poly-
peptide was evidenced (unpublished) and is in
agreement with the results described for poly-
peptide ¥ by Janssen & Méoller [47]. The EF-1B
fraction, isolated from Guerin epithelioma [44],
was thermostable [40]. Slobin & Moller [53]
have observed that the aggregate of EF-1 from
A. saling was not inactivated at 42°C but, on
addition of GTF, dissociated and lost its activ-
ity. Our observations could suggest that EF-1C
protects EF-1A against thermal inactivation. It
would be interesting to know whether poly-
peptide v, the function of which is still un-
known, is responsible for the thermostability of
EF-1C.

It should be noted that, in the EF-1B fraction
isolated from rat liver cells, EF-1C was present
while EF-1A was absent (to be published). This
means that the subunit forms of EF-1 from rat
liver show lesser tendency to aggregate with
each other and can exist separately in the liver
tissue.

ELONGATION FACTOR 2 (EF-2)

For the elongation of ribosome-bound poly-
peptides, in addition to EF-1 and other compo-
nents of the elongation system, EF-2 and GTP
are required for translocation of mRNA and
peptidyl-tRNA from the aminoacyl site (A) to
peptidyl site (P), which allows the ribosome to
bind new incoming aminoacyl-tRNA at the
aminoacyl site [54 - 57].

The pure translocation factor (EF-2) was ob-
tained from rat liver [34). On the analytical
ultracentrifuge the purified protein moved as
an essentially homogeneous peak. The S20,0
value was 4.7 S and molecular mass about 64
kDa. The homogeneity of the purified EF-2 was
confirmed by gel-electrophoresis and electro-
focusing [34].

Evidence has been presented [58] that the
translocation reaction exhibits characteristics
consistent with those of the enzyme-catalyzed
reaction with respect to the enzyme (EF-2), the
substrate (ribosomal peptidyl-tRNAa) and the
factor (GTP); a single enzyme catalyzes trans-
location of several ribosomes, suggesting that
the interaction between ribosomes and EF-2 is
a reversible process, and that the active EF-2
dissociates from the complex on formation of
the product. One of the models for the interac-
tion between EF-2 and ribosomes postulated
[58] that the EF-2eribosome complex would
dissociate when the substrate of the reaction,
peptidyl-tRNAa, becomes converted to pepti-
dyl-tRNAp; the released EF-2 could then react
with the same or another ribosome.

Tanaka et al. have shown [59] that EF-2 from
pig liver makes with GTP the EF-2¢GTP com-
plex which very fast binds to ribosomes. The
ternary complex EF-2e¢ GTPeribosome is trans-
formed during the translocation step into the
EF-2eGDPeribosome complex, which be-
comes dissociated into ribosome and the bi-
nary complex EE-2¢GDP. The latter in the reac-
tion with GTP, reproduces the EF-2¢GTP com-
plex, releasing GDP.

It is known that EF-2 activity is inhibited b}
the diphtheria toxin in the presence of NAD".
The mechanism of this inhibition appears to
lead through adenosine diphosphate ribosyl-
ation of the EF-2. Ultracentrifugal studies sug-
gest [60] that formation of a ternary complex
consisting of the toxin, EF-2 and NAD* may be
the first step of this inactivation. Further ex-
periments suggested that the complex dissoci-
ates when the nicotinamide riboside linkage is
cleaved, resulting in formation of the ADP-ri-
bosylated EF-2. This could indicate that the
mechanism of inhibition may not involve sim-
ply a transfer of ADP-ribose from the toxin to
ER-2 [60].

EF-2 can be markedly altered in some organ-
isms, for instance in mutants [61] or under
changed conditions [60, 62 - 67]. The isolation,
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purification and characterization of EF-2 from
Guerin epithelioma cells was carried out and
described [68, 69). The final EF-2 preparation
was homogeneous when tested by polyacryla-
mide-gel electrophoresis (Fig. 6 a, ¢) and it was
found to be a protein consisting of identical
polypeptides (Fig. 6 b).

The pl value of Guerin tumour EF-2 was
found to be 6.5 {68]. The molecular mass of
tumour EF-2, determined by ultracentrifuga-
tion in sucrose gradient was about 68 kDa and
was very close to that of rat liver EF-2 [34]. No
visible differences were found between amino
acid compositions of EF-2 from Guerin epithe-
lioma and from rat liver cells [68].

Studies on specificity of the elongation factors
have shown that the prokaryotic EF-T can re-
place EF-1 in animal systems, while EF-G from
E. coli was inactive when added instead of ani-
mal EF-2 [61]. The lack of tissue specificity has
been demonstrated by cross-examinations be-
tween systems isolated from rat liver and
Guerin epithelioma cells [69]. However, af-
finity of the Guerin EF-2 to the liver elongation
system was lower by half as compared with the
homologous tumour or liver systems.

The N-terminal and C-terminal amino acids
of EF-2 proteins from normal rat liver and

Fig. 6. Polyacrylamide-gel electrophoresis of the
purified EF-2 from Guerin epithelioma: a and c,
without SDS; b, with SDS.

Guerin epithelioma cells were identified [69].
In either EF-2 preparation the only N-terminal
amino acid was alanine. In EF-2 isolated from
various sources there was also only one N-ter-
minal amino acid [65 - 67, 70, 71]. C-terminal
amino acids of EF-2 were determined after hy-
drazinolysis of EF-2[69]. The C-terminalamino
acid in EF-2 from rat liver was glycine, while in
EF-2 from Guerin epithelioma cells it was
serine.

N- and C-terminal fragments of EF-2 mole-
cule are important for the functional activity
and for the molecule interaction with ribo-
somes [72]. Structural differences between
translocation factors were observed as an effect
of mutation [61] or other alterations accompa-
nied by dramatic changes of their activity {71].

Some differences in the polypeptide composi-
tion of trypsinolysed homogeneous EF-2 prep-
arations from Guerin epithelioma and rat liver
have been also demonstrated {69]. In tumoural
EF-2 hydrolysates the lack of the acidic peptide
was observed while more of basic peptides
were present as compared to those in EF-2 from
rat liver. ]

The active center of EF-2, responsible for the
binding reaction with ribosomes, is situated at
the C-terminal domain of the molecule {73]. In
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our experiments it was found that the rat liver
EF-2 lost about 70% of its activity after 0.5 h
incubation with carboxypeptidase. In the same
conditions, EF-2 from Guerin epithelioma cells,
lost only about 30% of its activity. It was also
shown that after digestion of the later EE-2 with
carboxypeptidase, this elongation factor was
almost unable to bind to ribosomes.

The sensitivity of both tumoural and normal
EF-2 to N-terminal degradation was lesser than
that from the C-terminal. Incubation of EF-2
with aminopeptidase for 0.5 h resulted inabout
only 10% losses of the activity.

In various animal tissues the presence of an
identical substrate of 100 kDa, specific for the
calmodulin and Ca® *-dependent protein ki-
nase has been demonstrated [74] and this sub-
strate was identified as EF-2 [75 - 77]. The
enzyme that specifically phosphorylated EF-2
was named kinase III [78]. The activity of EF-2
was decreased after phosphorylation and this
effect was reversed by dephosphorylation [79).
When the phosphorylation of EF-2 was carried
out in the presence of EGTA [ethylene glycol-
bis(B-aminoethyl ether) N.N,N’ N'-tetraacetic
acid] —~ a kinase inhibitor, EF-2 activity was
preserved, but if NaF —a phosphatase inhibitor
was added, EF-2 activity was decreased. These
results are in agreement with the reports from
other laboratories [75, 80 - 83].

Some results that were obtained in our labor-
atory (unpublished) have shown the possi-
bility of existence of EF-2 in multiple forms.
EF-2 was isolated from the postribosomal
supernatant of rat liver or Guerin epithelioma
cells and then purified consecutively by: filtra-
tion on Sephadex G-25, precipitationat 30 - 80%
ammonium sulphate saturation, chromato-
graphy on DEAE-Sephadex A-50, CM-5epha-
dex C-50, hydroxylapatite and Ultrogel AcA-
44. The active fractions of EF-2 eluted from the
Ultrogel AcA-44 column were separated by
electrophoresis according to Laemmli [84] into
two bands. One of them showed electro-
phoretic mobility corresponding to molecular
mass of approx. 90 kDa, the second of approx.
65 kDa. Two fractions (90 kDa and 65 kDa} with
EF-2 activity were obtained also by ultracen-
trifugation in sucrose gradient. Only the 65 kDa
EF-2, was isolated from the active polyribo-
somes. Thus, it can be concluded that EF-2
exists in at least two forms differing in molecu-

lar mass and that EF-2 of 65 kDa may take part
directly in the translocation process.

Summarizing, the elongation factors EF-1 and
EF-2, isolated from Guerin epithelioma cells,
are functionally similar to those from liver of
normal rats. Differences were observed in rela-
tion to composition of the aggregates of EF-1
subunit forms and their ability to undergo
autophosphorylation. In Guerin epithelioma
cells, EF-1C exists in the aggregate with EF-1A
and can be isolated after dissociation of the
aggregate EF-1B in the presence of GTP. In rat
liver, the subunit forms EF-1A and EF-1C can
exist separately and they can be isolated with-
out the GTP dependent dissociation. Moreover
some peculiarities of the EF-2 isolated from
Guerin epithelioma were demonstrated. The
C-terminal amino acid and peptide map of
trypsinolysed tumour EF-2 molecules are dif-
ferent from those of EF-2 from liver cells of
normal rats. Furthermore, sensitivity of tu-
mour EF-2 to digestion by carboxypeptidase
was lesser than that of EF-2 from rat liver.

We can conclude that our studies on the
elongation factors of rat liver and Guerin epi-
thelioma yielded high purified preparations of
EF-2 and subunit forms of the heterogeneous
factor EF-1. Their structural and functional
characterization revealed some peculiarities of
the tumoural elongation factors that will be
taken advantage of the search specific inhibi-
tors of protein biosynthesis, especially in some
tumour cells, as it was suggested in previous
papers [85 - 88].
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