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Regulation of base-exchange enzyme activity

In mammalian cells, phosphatidylserine is
synthesized mainly by the base-exchange reac-
tion. The base-exchange enzymes catalyse the
displacement of the base moiety of various
phospholipids by a free base (serine, ethanol-
amine or choline) [1, 2]. These enzymes are

*-dependent and predominantly located in
the endoplasmic reticulum, although some ac-
tivity has also been found in the plasma mem-
brane and other subcellular fractions [3]. They
are dlstmct from phusphohpase D, which re-
quires Ca®* or Mgz , and are unable to form
phosphatidylethanol in the presence of ethanol
[4, 5]. The enzymes catalyzing incorporation of
ethanolamine, choline and serine show differ-
ent kinetic parameters [2]. Localization of these
enzymes in the transverse plane of the endo-
plasmic reticulum membrane also seems to be
different. In rat brain membranes, the enzymes
incorporating both ethanolamine and choline
are located on the cytoplasmic surface, whereas
the active centre of the serine-incorporating
enzyme seems to be also accessible from the
extracytoplasmic surface [6, 7]. Some authors
claimed that, in liver tissue, the active centres
of all base-exchange enzymes are expressed on
the cytoplasmic side of microsomal vesicles [8],
whereas others suggested the same localization
as in brain tissue [9].

The base-exchange reaction, leading to the
formation of phosphatidylserine, may be a part

of the methylating pathway [10] that is be-
lieved to operate in liver but not in brain. On
the other hand, in brain, the incorporation of
serine into phospholipids by base-exchange
may be important in supplying the pool of free
choline. Recent studies on cultured Chinese
hamster ovary cells have shown that phos-
phatidylcholine is the preferred lipid substrate
for serine incorporation [11]. In his studies on
liver tissue, Bjerve [12] observed that both
phosphatidylcholine and phosphatidyletha-
nolamine can serve in vitro as substrates for the
serine base-exchange. However, the enzyme
partially purified from brain prefers ethanol-
amine lipids as substrates for the exchange
with free serine [13]. The ethanolamine-serine
base-exchange enzyme which was purified
nearly to homogeneity by the same group
could effectively use phosphatidylethanol-
amineand aso lectins as lipid substrates but not
pure phosphatidylcholine or other lipids [14].
Although the base-exchange enzymes have
been known for many years, their regulation is
still an unsolved problem. Recent studies indi-
cate that several factors may be involved in l'hlS
process. One of them is the availability of Ca®*
This is particularly important in the case of the
serine-incorporating enzyme, due to its specific
localization in endoplasmic reticulum mem-
branes. Recent studies with various cultured
cells [9, 15] have shown that the release of cal-
cium from the endoplasmic reticulum by iono-
phores (A23187 or ionomycin) strongly lowers
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phosphatidylserine synthesis. Thapsigargin
and 2,5-di(t-butyl)-benzohydroquinone, in-
hibitors of Ca’*-ATPase have a similar effect. In
this case their action can be explained by pre-
venting the pumping of Ca’* into endoplasmic
reticulum cisternes. From earlir studies [2] it is
also known that optimum Ca“" concentration
is a function of pH (and vice versa) and is differ-
ent for the enzymes acting with choline, etha-
nolamine and serine. Thus, the availability of
calcium directly affects not only the V values
but also Km values of the enzymes for free
bases.

Among the three base-exchange enzymes in
the brain microsomal membrane, the serine-ex-
change activity was found to be stimulated by
sphingosine [16] and amphiphilic cations such
as oleylamine, W-7, chlorpromazine and di-
dodecyldimethylamine, whereas amphiphilic
anions (bis(2-ethylhexyl)hydrogen phosphate
and cholesterol sulphate) were inhibitory [17].
Since amphiphilic cations and anions have no
effect on the Km value towards L-serine but
only upon the V value of the reaction, it is
suggested that their effect is related to interac-
tion of the lipid substrate with the membrane-
bound enzyme. Long-chain fatty acids, par-
ticularly the unsaturated ones, also exert a
modulating effect on base-exchange activities
[16]. Both serine- and ethanolamine-exchange
activities in rat brain microsomal membranes
have been found to be stimulated by oleate,
linoleate and arachidonate at low concentra-
tions (0.1 - 0.5 mM), whereas the choline-ex-
change activity was inhibited by these acids
[16].

Evidence for regulation in vitro of base-ex-
change activities by the phosphorylation-de-
phosphorylation cycle was presented [18] in
experiments with brain microsomes preincu-
bated under conditions favourable for phos-
phorylation by cAMP-dependent protein ki-
nase or for dephosphorylation by alkaline
phosphatases. The pretreatment with cAMP
and ATP resulted in an increase of all three
enzyme activities, being most effective for the
choline base-exchange activity, whereas expo-
sure of microsomes to phosphatases lowered
all exchange activities [18].

Another factor involved in the regulation of
base-exchange activities is the lipid pattern of
the microsomal membrane. This was demon-
strated when microsomal membranes were en-

riched with various lipids either by the Ca®*-
dependent fusion mechanism [19, 20] or by a
procedure involving the disruption of the
membranes with detergent and their re-assem-
bly following detergent removal [21]. As
shown, for example, for liver microsomes, the
incorporation of exogenous phosphatidylino-
sitol by Ca?*-dependent fusion inhibited both
ethanolamine and serine base-exchange acti-
vities, leaving the choline-exchange activity
practically unaffected. On the other hand,
phosphatidylserine incorporated into mem-
branes inhibited ethanolamine- and choline-
exchange activities only slightly and, when in-
serted in high amounts, also the serine-ex-
change activity [22]. A weak inhibition of the
serine-exchange activity by phosphatidyl-
serine and lack of effect of phosphatidic acid on
all three base-exchange activities in liver are in
contrast to the data on rat brain microsomes
[20] and clearly show that base-exchange is
differently regulated by phospholipid compo-
sition in these two tissues. However, phos-
phatidylserine inserted into liver microsomal
vesicles re-assembled after detergent removal
had a very strong inhibitory effect on the serine
base-exchange activity [23]. The explanation
for this difference may be provided by the fact
that, following CaZ*-induced fusion, the phos-
pholipid could enter certain domains of the
membranes, whereas following re-assembly a
random distribution of lipids in re-aggregated
vesicles could be expected.

In liver and brain microsomes the effect of
other exogenous phospholipids, i.e. phosphati-
dylcheline and phosphatidylethanolamine, on
base-exchange enzymes was found to be
strongly dependent on molecular species.
Usually, unsaturated phospholipids inserted in
low amounts were stimulatory, whereas satu-
rated species seem to be inhibitory [23, 24].

Regulation of phosphatidylserine transport

Phospholipid composition of the membrane
may also be important for the release of newly
synthesized phospholipids from the site of
their synthesis. This may concern, first of all,
phosphatidylserine, the lipid which has to be
transported to mitochondria for decarboxyla-
tion. Recent studies have shown that in vifro, in
the reconstituted system containing micro-
somes and mitochondria, the transport of
phosphatidylserine proceeds without partici-
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pation of any soluble phosholipid transfer pro-
tein [25 - 27]. Moreover, evidence has been
presented that newly synthesized phosphati-
dylserine is much more efficiently exported to
mitochondria than the bulk phospholipid [27].
The import of phosphatidylserine to mitochon-
dria and the export of phosphatidylethanol-
amine from mitochondria were described as
collision processes [26]. Different results have
been, however, obtained with phosphati-
dylserine liposomes used as lipid donor for
mitochondrial decarboxylase. In such a case
the translocation-dependent decarboxylation
of phosphatidylserine was found to be en-
hanced by rat liver cytosol or a non-specific
lipid transfer protein purified therefrom [28 -
31]. Divalent cations at millimolar concentra-
tions and monovalent cations at much higher
concentrations inhibit the protein-mediated
transport of phosphatidylserine. This effect is
due to a limited interaction of the protein with
less negatively charged donor membranes [31].
These results and other data [32, 33] indicate
that a non-specific lipid-transfer protein lowers
the energy barrier of lipid-monomer dissocia-
tion by interacting with the membrane. The
protein becomes a part of the transient complex
that seems to be influenced by electrostatic in-
teractions. It should be added that this protein
being cationic, favours the electrostatic interac-
tion. Whether a non-specific lipid transfer pro-
tein participates in the intracellular transport of
phosphatidylserine to mitochondria in vive is
not clear. Regardless of this question, a stimu-
latory effect of ATP on phosphatidylserine
transport from the endoplasmic reticulum to
mitochondria in baby hamster kidney cells and
in permeabilized Chinese hamster ovary cells
has been reported [34, 35].

The intramitochondrial transport of phos-
phatidylserine represents another problem.
The author’s data [36] and those of Voelker [25]
have shown that the active centre of the decar-
boxylating enzyme located in the inner mito-
chondrial membrane [37, 38] is exposed to the
intermembrane space. Thus, phoshatidylserine
introduced into the outer membrane by means
of either the non-specific lipid transfer protein,
collision mechanism or fusion, is then translo-
cated to the inner membrane. Involvement of
contact sites in this process has been proposed
for yeast [39] and liver mitochondria [40 - 42].
Phosphatidylethanolamine, the product of de-

carboxylation, moves through contact sites and
can be found in the outer mitochondrial mem-
brane [42, 43]. In brain mitochondria the newly
formed phosphatidylethanolamine does not
leave the inner mitochondrial membrane; this
indicates that decarboxylation of phosphati-
dylserine in liver has a different biological
meaning than in brain [44]. However, a recent
study on liver mitochondria with the use of
fluorescent pyrenyl derivatives of phosphati-
dylserine and phosphatidylethanolamine sug-
gests that decarboxylation of phosphatidyl-
serine occurs in the inner leaflet of the outer
mitochondrial membrane (Jasifiska, Zborow-
ski and Somerharju, unpublished).
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