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Specificity of a drug vs its target is an import-
ant problem in chemotherapy. Thymidylaie
synthase (EC 2.1.1.45) catalyzes the C(5) methy-
lation of dUMP in a concerted transfer and
reduction of the hydroxymethyl group from

‘m~methylenetetrah}rdrnfnlate and with
concomitant production of dihydrofolate [1, 2];
(Fig. 1). As the sole de nove source of thymidy-
late synthesis in cells, it is a target in anticancer,
antiviral, antifungal and antiprotozoan che-
motherapy [3 - 7]. AdUMP analogue, 5-fluoro-
dUMP (FAUMP), a strong thymidylate syn-
thase inhibitor, is an active form of drugs used
in chemotherapy, such as 5-fluorouracil (FU)
and 5-fluoro-2"-deoxyuridine (FdUrd). The in-
hibition mechanism is based on the reaction
mechanism and involves time-dependent for-
mation of a ternary covalently bound carrj:glex
of the enzyme with FAUMP and
methylenetetrahydrofolate, resulting in slowly
reversible enzyme inactivation. FdUMP inhibi-
tmn is usually described by the Kj values in the
10 M range but tumour resistance to FU or
FdUrd may be accompanied by the presence of
altered thymidylate synthase forms, less sensi-
tive to the inhibitor [8 - 12]. Foran experimental
tumour system correlation was shown between
cell growth inhibition by different 5-sub-
stituted 2’-deoxyuridines and both inactivation
of cellular thymidylate synthase and inhibition
of the isolated enzyme by 5-monophosphates

of respective 5-substituted 2'-deoxyuridines
[13,14].

Recent studies showed that substitution of the
pyrimidine ring C4)=0 group in FAUMP (Fig.
2) by either C4y=N-OH group (in N*-hydroxy-
5-fluoro-2"-deoxycytidine-5-monophosphate;
N*.OH-FdCMP) or C(#=S group (in 4-thio-
FAdUMP) preserves high inhibitory potency of
the drug but may alter its specificity for thymi-
dylate synthases from various sources, differ-
ing in sensitivity to slow-binding inhibition by
FAUMP (Fig. 3). This phenomenon seems to be
due to some interplay, of yet unknown nature,
between the substituents at Cyg) and C¢5) in
their interaction with the enzyme [15, 16].

Both FAUMP analo lles inactivate the
enzyme in time- and N> methylenetetrahy—
drofolate-dependent manner. However, al-
though in both cases inactivation mechanisms
are apparently based on the reaction mechan-
ism, they are not necessarily identical. While
enzyme inactivation by 4-thio-FAUMP seems
to be due to the presence of the 5-fluoro substi-
tuent, since 4-thio-dUMP behaves as thymld}r-
late synthase substrate [17], with N 1.0H-
FACMP the C(4y=N-OH substituent is probably
the cause of inactivation and the 5-fluoro sub-
stituent potentiates this process [15]. To explain
the latter phenomenon, pointing clearly to an
interplay between the C4=N-OH and C5)-F
substituents, an intramolecular hydrogen
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Fig. 1. The reaction catalyzed by thymidylate synthase

bonding N"'-(}H..,F-C(s; was hypothesized,in-  the rare speciesanti, found to be the only inhibi-
fluencing an assumed syn-anti, relative to N(3) tory form [15]. However, results of ab initio
equilibrium of rotamers around the Cﬂ}-N{ quantum mechanical calculations brought
bond (Fig. 4), and resulting in stabilization of  such a mechanism into question [18, 19]. Thus,
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Fig. 2. Structures of FAUMP, N*-OH-FdCMP and 4-thio-FdUMP
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Fig. 3. K; values describing inactivation by FAUMP, N*-OH-FACMP and 4-thio-FAUMP of thymidylate
synthases from: Ehrlich carcinoma (1), L1210 parental (2) and FdUrd-resistant (3) cells, regenerating rat

liver (4), and the tapeworm, Hymenolepis diminuta (5) [15,16, 23].
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mechanisms of the interplay between the
C(4y=N-OH and C5)-F, and between the C(4)=5
and C¢5)-F groups, influencing enzyme inacti-
vation in such a way that it becomes sensitive
to some non-conservative amino-acid residu-

H’D‘N’ $ H"'O\
N
F H
= |
J\ -_— *
8] ? H 0 'Iq H
R
syn-amino syn-imino

b

N’ ':_'
H H
N N | F
04\1, OJ\ N H
|
R
anti-amino anti-imino

R = 2'-deoxyribose-5-phosphate

Fig. 4. Amino-imino and syn-anti equilibria for

-OH-FACMP and hypothetical stabilization of
the syn rotamers by intramolecular hydrogen bond-
ing [15].

e(s) undergoing variations in active centres of
different thymidylate synthases, do not have to
be different.

It should be noted that a crucial role has been
ascribed to dUMP pyrimidine C(4=0 and a
non-dissociated N(3)-H groups in the speci-
ficity of enzyme binding, via an active centre
asparagine residue and an ordered water mole-
cule, of the pyrimidine moiety [20, 21]. This
phenomenon, resulting in the discrimination
by thymidylate synthase active centre between
dUMP and dCMP, with the above mentioned
asparagine residue proposed to stabilize, by
hydrogen bundmg, the partial negative charge
developed on O of covalently bound dUMP
[22], has been suggested to be mechanism-
based [20]. Since strong mechanism-based in-
activation by FAUMP or 4-thio-FAUMP of
thymidylate synthase has been shown to de-
pend on a non-dissociated N(3)-H group [23],
the active centre asparagine appears to be in-
volved in the interaction, as pmposed by Fig. 5.
The same is probably true for N 4 OH-FdCMP
and N*-OH-dCMP, as (i) the most stable appear
to be their imino forms [18, 19 and references
therein], with the non-dissociated N(3)-H and
C(4y=N-OH [imitating the C(4)=0] groups (Fig.
4), and (ii) compansun of thymidylate synthase
inactivation by N*-OH-dCMP and dCMP
showed a lack of activity of the latter [15], indi-
cating again strong demand for the structure
involving N(3)-H and C¢4)=N- groups.

In view of the foregoing, the mechanism of
apparent sensitivity of thymidylate synthase
inactivation by 4-substituted FAUMP anal-
ogues to variations of nonconservative amino-
acid residue(s) in the enzyme active center is
probably related to the mechanism of pyri-

+
i H HisH*

Fig. 5. Possible involvement of the active centre asparagine in thymidylate synthase inactivation by FAUMP

(R = 2'-deoxyribose-5"-phosphate).
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midine recognition and the crucial role of the
C4)=0 group in the latter. An additional sup-
port for this interpretation comes from the find-
ing that specificity of 2-thio-FAUMP for inacti-
vation of thymidylate synthases 1 - 5 (for
enzyme sources see Fig. 3, legend) paralleled
that of FAUMP [16, 24]. The exact nature of this
phenomenon, potentially exploitable in che-
motherapy, remains to be elucidated.
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