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Hypertrophic versus hyperplastic growth

Tissues and organs can respond to a variety of
physiological and nonphysiological stimuli by
increasing their weight, volume and size. De-
pending on the kind of stimulus and tissue,
organ growth can be achieved by two highly
regulated and fundamentally different pro-
cesses, namely by increase in size of existing
cells (hypertrophy), or by cell proliferation
(hyperplasia). The major differences between
the processes of hypertrophy and hyperplasia
are listed in Table 1. The primary difference is
the large increase in DNA synthesis associated
exclusively with hyperplasia. Consistent with
thelow levels of DN A synthesis in hypertrophy
is only a slight increase of H4 histone gene
expression which is known to be tightly
coupled to DNA synthesis [1]. Patterns of ex-
pression of several proto-oncogenes vary
greatly between hypertrophy and hyperplasia;
this strongly suggests that proto-oncogenes are
primarily involved in the replicative compo-
nent of growth rather than in hypertrophy
stage [1, 2].

An increase in cell size and protein content is
characteristic for cells undergoing hyper-
trophy, but also for replicating cells prior to
DNA synthesis. Different gene expression
found at the early stages of cell enlargement in
hypertrophy and hyperplasia suggests that the
two processes are uncoupled, and regulated by
different early events [2]. Thus, cell hyper-

trophy is not due to interruption of the normal
cell cycle at a stage of cell enlargement with an
increased complement of organelles and mole-
cules (G1). Cells undergoing hypertrophy do
not pass through Gy, but remain quiescent in
Go in a state of "sustained message amplifica-
Hon" [2].

Table 2 contains several examples of organs
and tissues undergoing hypertrophy or hyper-
plasia under the influence of different stimuli.
Thus, in response to partial destruction of the
organ, compensatory growth occurs, as in the
case of liver regeneration after partial hepatec-
tomy, adaptive intestinal hyperplasia after
jejunectomy, or renal compensatory hyper-
trophy after contralateral kidney removal. En-
largement of the organ, occurring as a part of
functional adaptive responses, can also be
caused by, among other things, metabolic sig-
nals (e.g. hormones), chemical or mechanical
tissue injury, or in the case of heart, by strenous
physical activity and exercise (Table 2).

Polyamine biosynthesis stimulation in hyper-
trophy and hyperplasia

Two polyamines, spermidine and spermine,
and their precursor diamine putrescine, omni-
present components of all living cells, are ali-
phatic polycations with three, four and two
positive charges, respectively, at physiological
pH. In the cell they are bound to macromolecu-
lar anionic sites in nucleic acids, ribosomes and
membranes. Polyamines are believed to be es-

! Abbreviations: ODC, -:}mrthme decarboxylase; AdoMetDC, S-adenosylmethionine decarboxylase; SAT,
sperm:dmcfspcnmncN -acetyltransferase; DFMO, a-difluoromethylornithine
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Table 1
Hypertrophy versus hyperplasia
Hypertrophy Hyperplasia
Organ size and weight increased increased
Cell size increased changable in cell cycle
RNA and protein synthesis increased increased
Cell proliferation not affected increased
DMA synthesis not affected increased
Protein/DNA ratio increased unchanged
RNA /DNA ratio increased unchanged
Gene expression:
H4 histone [1] slightly increased 9-fold increase
gﬂt}:ﬂﬁfimm’ ofos) [1,2] slightly increased 2 - 20-fold increase

Table 2
Hypertrophy or hyperplasia of organs and tissues induced by various stimuli
Organ/Tissue Stimulus Hypertrophy/Hyperplasia |

Kidney unilateral nephrectomy compensatory hypertrophy [1-5]

testosterone hypertrophy [6 - 10]

pregnancy hypertrophy [11]

folate hyperplasia (2, 12]

antifolate CB3717 hyperplasia [10,13]
Liver partial hepatectomy hyperplasia (e.g. [1, 14])

chemical injury, e.g. carbon tetrachloride |hyperplasia [15]

pregnancy hyperplasia [11]
Heart thyroxine hypertrophy [16]

isoproterenol hypertrophy /hyperplasia [17 - 20]
Aortas mechanical injury hyperplasia [21]
Intestine jejunectomy hyperplasia [22, 23]

injury induced by chemotherapy hyperplasia [24]

phytohemagglutinin hyperplasia [25]

sential for cellular growth, proliferation and
differentiation, although their physiological
function at the molecular level is still not well
understood [26, 27]. Polyamine metabolism is
stimulated at the onset of hypertrophic and
hyperplastic growth processes in the adult or-
ganism, independently of applied stimuli, as
was shown in the experimental models of
hypertrophy and hyperplasia given in Table 2.

The most remarkable change appears to be the
induction of ornithine decarboxylase (DO},
the first and rate-limiting enzyme in the
polyamine biosynthetic pathway. The activity
of ODC, responsive to multiple stimuli, in-
creases both in hypertrophy and hyperplasia,
although often to differing degrees. In com-
parative studies on polyamine metabolism in
testosterone-induced hypertrophic and antifo-
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late-induced hyperplastic mouse kidney mod-
els, we found a dramatic, several hundred-fold
increase of renal ODC by testosterone, and a
much lower increase evoked by antifolate [9,
10, 13]. Interestingly, accumulation of the ODC
product, putrescine, was comparable in hyper-
trophic and hyperplastic kidney, pointing to a
precise regulation of its intracellular pool
which, similar to other polyamines, can be ac-
complished by synthesis, interconversion, up-
take, degradation and/or covalent incorpora-
tion into proteins [10].

In contrast to putrescine levels which increase
up to 10-fold in hypertrophic or hyperplastic
tissues, spermidine and spermine, which are
synthesized later in the polyamine pathway,
are always less affected [6, 7, 10, 16, 18, 21, 22].

S-Adenosylmethionine decarboxylase (Ado-
MetDC), another key regulatory enzyme of
polyamine biosynthesis, responded differen-
tially to the growth-promoting stimuli. In the
mouse kidney, in contrast to ODC, it was unre-
sponsive to testosterone [9], but its activity in-
creased several-fold in antifolate-induced
hyperplastic kidneys [10] and hypertrophic
heart [16].

Spermidine/spermine N -acetyltransferase
(SAT), the enzyme regulating the activity of the
polyamine interconversion pathway, was in-
duced in hyperplastic rat ludney [12]. Accumu-
lation of SAT product, N! -acetylspermidine,
found in antifolate-induced hyperplastic kid-
ney [10] and isoproterenal-induced hypertro-
phic heart [19], provided additional indirect
evidence of SAT induction in these two hyper-
plastic organs.

The response of two key enzymes of the
polyamine biosynthetic pathway to hyper-
trophy and hyperplasia, and polyamine pools
are summarized in Table 3.

Functional role of polyamines in hypertrophy
and hyperplasia; inhibitor studies

Although a number of studies was aimed at
understanding the role of polyamines in regu-
lated organ growth, it was not possible to di-
rectly evaluate their critical role until specific
inhibitors of their metabolism were developed.
A powerful, irreversible and specific inhibitor
of ODC, a-difluoromethylornithine (DFMO),
introduced in the late 1970's, is the best known
and most often used inhibitor in polyamine
research (e.g. [26]).

In accordance with the antiproliferative effect
of DFMO, hyperplastic organs responded to
this inhibitor. Thus, increases in ODC activity
and polyamine biosynthesis which have been
reported to be critical for recovery from che-
motherapy-induced injury of rat intestinal mu-
cosa [24] and adaptive post-resectional intesti-
nal rat hyperplasia [22] were abolished by
DFMO. Similarly, in diabetic rats DFMO lo-
wered ODC activity and polyamine content,
preventing intestinal epithelium hyperplasia
[23]. In a hyperplastic antifolate-induced kid-
ney model, DFMO significantly lowered pu-
trescine and spermidine levels and influenced
biochemical markers of hyperplasia, pointing
to the role of spermidine (rather than putres-
cine) in mediation of renal hyperplastic growth
[10]. Similarly, spermidine (but not putrescine
or spermine) was suggested to be responsible

Table 3
Polyamine metabolism in testosterone-induced hypertrophic and antifolate-induced hyperplastic mouse
kidney [10]
Hypertrophic kidney Hyperplastic kidney
Ornithine decarboxylase induced (700 x) induced (68 x)
AdoMet decarboxylase not affected induced (4.3 x)
Polyamine level:
Putrescine increased (5.3 %) increased (7.8 x)
Spermidine increased (1.6 %) increased (1.5 %)
Spermine insignificantly increased decreased (0.8 x)
Spermidine/Spermine ratio unchanged (< 1) increased (> 1)
N'-acetylspermidine not affected increased (14.7 %)
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for the intestinal epithelial hyperplasia in
diabetic rats [23].

The role of polyamines in the process of
hypertrophic growth was studied mainly in
renal and cardiac hypertrophy models. An-
drogen-induced hypertrophic kidney is char-
acterized by spectacular induction of ODC and
putrescine content, and a less significant in-
crease of spermidine and spermine [6, 7, 10].
DFMO, by inhibiting ODC, prevented
augmentation of putrescine levels, but did not
influence kidney hypertrophy [7, 10], bio-
chemical markers of hypertrophy [10], or the
response of marker gene to androgen [7]. These
findings argue against the previously sug-
gested mediation of androgen response by pu-
trescine in mouse kidney [6]. Similarly, stimu-
lation of renal ODC activity and putrescine
content did not appear critical to the process of
compensatory renal hypertrophy after unilat-
eral nephrectomy in the rat [3].

Cardiac hypertrophy induced by thyroxine
in rats was accompanied by increased activity
of polyamine synthesizing enzymes and elev-
ated content of polyamines [16]. This increase
was not, however, an obligatory component of
the hypertrophic response because thyroxine-
induced hypertrophy was not abolished by a
non-physiological polyamine [16] or DFMO
[28] which prevented the increasein polyamine
concentration. In contrast, isoproterenol-in-
duced cardiac growth was attenuated by
DFMO, indicating that there are major differen-
ces in the cellular mechanisms by which thy-
roxine and catecholamines elicit increased car-
diac growth [28]. In this context it is worth
mentioning that DFMO normalized increased
kidney weight in experimental diabetes, but
only in the second, hyperplastic phase of kid-
ney growth; DFMO had no effect during the
initial phase which was due primarily to hyper-
trophy [29].

Polyamine depletion in vivo

The studies on functional coupling between
polyamine levels and hypertrophy or hyper-
plasia are often difficult to interpret due to the
fact that even such a specific and potent inhibi-
tor as DFMO produces states of only partial
polyamine depletion (significant reduction of
intracellular putrescine pool, much lower de-
pletion of spermidine, and negligible reduction
oranincrease of spermine (e.g.[10]). Moreover,

most polyamines which are bound to cell con-
stituents are dispensable in the cell, and cellular
growth is not limited until a very small mini-
mum of polyamines is reached [30]. Therefore,
it is not surprising that, especially in vivo, the
effect of DFMO is not always evident.

It appears that blocking only the biosynthetic
route is insufficient to deplete cellular sper-
midine and spermine since the use of DFMO
alone triggers compensatory cellular mechan-
isms to bypass polyamine deprivation, e.g,.
diminished urinary polyamine excretion [31]
or enhanced polyamine transport [32]. In this
respect, it is important to remember that food
isan abundant source of polyamines, and food
polyamines are directed preferentially to tis-
sues and organs that have been stimulated to
grow [25]. More significant depletion of
polyamines could be achieved by combined
treatment of the animal with two or more spe-
cific inhibitors of the putrescine, spermidine
and spermine biosynthetic and polyamine in-
terconversion pathways [33, 34].

Protein-bound polyamines and transglutami-
nase in regulated organ growth

Recently a novel aspect of polyamine metabo-
lism has been reported [35, 36]. Polyamines
within the cell can be not only bound to cellular
anions by electrostatic forces, but can also be
irreversibly incorporated into proteins in trans-
glutaminase-dependent reactions, and partici-
pate in protein cross-linking. There is evidence
that transglutaminase and protein cross-link-
ing are involved in regulation of hypertrophic
and hyperplastic growth. High transglutami-
nase activity occurring in the kidney during
anatomical and functional hypertrophy can
lead to the formation of putrescine-protein
complexes as evidenced in pregnant rats [11].
The repair of gastric and duodenal stress ero-
sions is accompanied by an increase in ODC
and transglutaminase activity [37]. Inhibition
of mucosal repair by DFMO demonstrated that
polyamines are absolutely required for this
process. Spermidine prevented inhibition of
repair caused by DFMO, but only under condi-
tions of active transglutaminase. Thus, the in-
creased transglutaminase activity and protein
cross-linking may be part of the mechanism
requiring polyamines for healing of mucosal
stress erosions [37].
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Conclusions

The presented studies document that the in-
crease of ornithine decarboxylase activity and
polyamine content is associated with the onset
of both hyperplasia and hypertrophy. How-
ever, stimulation of polyamine biosynthesis is
critical exclusively for the hyperplastic growth
processes in which polyamines serve a media-
tory role. Activation of ODC and increase in
polyamine content, although accompanying
events in hypertrophy, seem not to be obliga-
tory, and often can be dissociated from hyper-
trophic growth. It is possible that enhancement
of polyamine synthesis is not required for
hypertrophy, and it is merely a consequence of
a change in the rate of protein synthesis and
degradation in the growing tissue [16].

Conflicting results on the role of polyamines
in hypertrophy can be connected with the fact
that it is practically impossible to obtain mod-
els of pure hypertrophic growth; usually pro-
liferation accounts to differing degrees for
organ growth, depending on the applied
stimuli or even animal age [5].
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