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Fructose-2,6-bisphosphate (Fru-2,6-P2")
stimulates 6-phosphofructo-1-kinase (PFK-1)
and inhibits fructose-1,6-bisphosphatase
(FBPase-1). As the result, glycolysis is activated
while gluconeogenesis is decreased [1]. Both
enzymes are multimodulated, i.e. precisely
controled by numerous effectors in response to
hormonal and metabolic demands [2, 3].

Insect fat body is one of the tissues in which
both glycolysis and gluconeogenesis were
found to occur [4]. The level of Fru-2,6-P2 in
insect muscle is known to change during flight
[5] and in fat body during starvation [6]; more-
over, PFK-1 is stimulated by this metabolite [5,
6]. However, the studies on insect FBPase-1 are
limited to only a few which were carried out on
muscle, prior to the discovery of the role of
Fru-2,6-P2 [7, 8].

This communication presents some proper-
ties of FBPase-1 from larval fat body of Peri-
planeta americana and preliminary results which
indicate that Fru-2,6-P2 inhibits the activity of
this enzyme.

The last instar larvae of the cockroach Peri-
planeta americana reared on standard diet, were
used. The fat body from abdomen was dis-
sected. For enzyme assays, the clear superna-
tant obtained after centrifugation of 10% ho-
mogenate at 100000 x g for 60 min was used.

FBPase-1 activity was measured spectro-
photometrically by following the rate of
NADP" reduction at 340 nm and 25°C in a
coupled enzyme assay system according to Sto-
rey & Bailey [4].

The pH optimum for the Periplaneta americana
fat body FBPase-1 was at 7.81in Tris/HCl and at
8.0 in glycylglycine/NaOH buffer (Fig. 1). The
Vimax of the enzyme was lower by 60% in gly-
cylglycine/NaOH buffer than in Tris/HCI
buffer. The pH optimum for this enzyme was
similar to those for the FBPase-1 from the flight
muscle of the bumble-bee [8] and of purified
FBPase-1 from the mantle of sea mussel [9].

Like FBPase-1 from other sources, the enzyme
from fat body has an absolute requirement for
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Fig. 1. Effect of pH on activity of the fat body
FBPase-1.

The activity was determined in the presence of 0.100 mM
Fru-1,6-P2, 0.010 mM MgClz and 50 mM: W, Tris/HC], or
+, glycylglycine/ NaOH buffers

1 Abbreviations: Fru-2,6-P2, fructose-2,6-bisphosphate; FBPase-1, fructose-1,6-bisphosphatase; PFK-1, 6-

phosphofructo-1-kinase
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divalent cations (Fig. 2). It seems that Mg?*
better fulfils the enzyme’s requ'.rement for a
divalent ion cofactor than does Mn**, The fat
body FBPase-1 activity changed sigmoidally
with Mgz concentration, like those of the beef
liver enzyme [10] and the rabbit muscle
enzyme [11].

Monovalent cations were less effective in ac-
tivation of the enzyme (Fig. 2). Maximum activ-
ity of the K stimulated enzyme was 60% that
with Mg as the cofactor. Na* activated the

enzyme only to 30% of its Vmax with M
Ammonium ions did not activate FBPase-1.

The enzyme activity responded hyperboli-
cally to increasing concentrations of the sub-
strate, Fru-1,6-P2 (Fig. 3). The Michaelis con-
stant determined from the double reciprocal
plot (Fig. 3) was 0.0108 £ 0.0020 mM Fru-1,6-P2.
This value is very close to 0.010 determined for
the purified FBPase-1 from the flight muscle of
bumble-bee [8].

Figure 4 presents the influence of the effector
Fru-2,6-P2 on the activity of the fat body
FBPase-1. It has been found that Fru-2,6-Pz2isa
powerful inhibitor of this enzyme. The
presence of 1 uM Fru-2,6-P2 resulted in the loss
of about 40% of the enzyme activity.

The results presented above indicate that the
Periplaneta americana fat body FBPase-1 resem-
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Fig. 2. Effect of divalent and monovalent cations on
activity of the fat body FBPase-1.

Tris/HCI buffer was used in the presence of: B, Mg®*; +,
Mn?*: %, K*:Q, Na*: x, NH
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Fig. 3. Effect of substrate concentration on activity

of the fat body FBPase-1 at pH 7.8.
Tris/HCI buffer was used. The Km value is the average of
7 determinations
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Fig. 4. Inhibition of the fat
2,6-P2.

The activity was determined in the presence of: 0.100 mM
Fru-1,6-P2, 0.010 mM MgCla, 50 mM Tris/HCl buffer, pH
7.5. The activity in the absence of Fru-2,6-I2 was 120
nmol/min per mg proteinand was taken as 100%

body FBPase-1 by Fru-
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bles the enzyme from other sources in several
respects, including pH optimum, activation by
ion effectors and substrate affinity. It is the
target enzyme for the inhibitory effect of

Fru-2,6-F2.
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