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Acute myeloid leukemia (AML) is a malignant disorder of 
hematopoietic stem and progenitor cells, characterized by 
accumulation of immature blasts in the bone marrow and 
peripheral blood of affected patients. Standard induction 
therapy leads to complete remission in approximately 
50% to 75% of patients. In spite of favorable primary re-
sponse rates, only 20% to 30% of patients enjoy long-
term disease free survival. Identifying proteins involved 
in prognosis is important for proposing biomarkers that 
can aid in the clinical management of the disease. The 
aim of this study was to construct a protein-protein in-
teraction (PPI) network based on serum proteins associ-
ated with unfavorable prognosis of AML, and analyze the 
biological pathways underlying molecular complexes in 
the network. We identified 16 candidate serum proteins 
associated with unfavorable prognosis (in terms of poor 
response to treatment, poor overall survival, short com-
plete remission, and relapse) in AML via a search in the 
literature: IL2RA, FTL, HSP90AA1, D2HGDH, PLAU, CO-
L18A1, FGF19, SPP1, FGA, PF4, NME1, TNF, ANGPT2, B2M, 
CD274, LGALS3. The PPI network was constructed with 
Cytoscape using association networks from String and 
BioGRID, and Gene Ontology enrichment analysis using 
the ClueGo pluggin was performed. The central protein 
in the network was found to be PTPN11 which is involved 
in modulating the RAS-ERK, PI3K-AKT and JAK-STAT path-
ways, as well as in hematopoiesis, and in the regulation 
of apoptotic genes. Therefore, a dysregulation of this pro-
tein and/or of the proteins connected to it in the network 
leads to the defective activation of these signaling path-
ways and to a reduction in apoptosis. Together, this could 
cause an increase in the frequency of leukemic cells and a 
resistance to apoptosis in response to treatment.
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INTRODUCTION

Acute myeloid leukemia (AML) is a malignant disorder 
of hematopoietic stem and progenitor cells, characterized 
by accumulation of immature blasts in the bone marrow 
and peripheral blood of affected patients. Response to 

chemotherapy treatment in patients with AML is wide-
ranging, and there are no adequate biomarkers to predict 
their clinical outcome (Bienz et al., 2005; Lazarevic et al., 
2015; Slovak et al., 2014). Standard induction therapy, 
based on cytarabine and anthracycline, leads to complete 
remission in approximately 50% to 75% of patients, de-
pending on prognostic factors, such as age or the pres-
ence of certain gene or chromosomal changes (Mroźek 
et al., 2012). In spite of favorable primary response rates, 
only approximately 20% to 30% of the patients enjoy 
long-term disease survival. This heterogeneity is related to 
acquired mutations, and deregulation in the expression of 
genes and non-coding RNA (miRNA) (Liao et al., 2017; 
Walker & Marcucci, 2012). It is clear that genetic stud-
ies are very valuable, but when isolated from a context 
in which thousands of proteins mediate cellular function, 
this information cannot be interpreted properly and with-
out bias. Protein-protein interaction (PPI) networks seek 
to characterize this flow of information within the cell 
and the organism in order to understand the functional 
relevance of expressed proteins (Končarević et al., 2014). 
Analysis of PPI networks can help understand mecha-
nisms involved in diseased states, and orient research 
strategies into biomarkers or therapeutic targets. Identify-
ing proteins involved in response to treatment is impor-
tant for proposing biomarkers that can aid in the clini-
cal management of AML. The aim of this study was to 
construct a PPI network with key proteins identified in 
the literature as associated with chemotherapy resistance 
in AML, and analyze the biological pathways underlying 
molecular complexes in the network. This approach rec-
ognizes that many pathways are involved in the pathogen-
esis of AML, and thus a multi-marker strategy will almost 
certainly be necessary, as a single biomarker is unlikely to 
be sensitive and specific enough.

MATERIALS AND METHODS

Seed proteins. We systematically searched PubMed 
for proteomic studies that analyzed prognosis of AML 
patients, with the criteria that blood or serum was used 
as a biological sample (Acute Myeloid Leukemia AND 
prognosis AND serum OR blood AND protein OR 
proteomics). Based on these criteria, and after manual 
curation, we identified 16 candidate proteins.

Construction of a protein-protein interaction net-
work. The PPI network was constructed using the 
STRING (Search Tool for the Retrieval of Interacting 
Genes/Proteins) web source (Szklarczyk et al., 2017) and 
the Biological General Repository for Interaction Datasets 
(BioGRID) database (Chatr-Aryamontri et al., 2017). The 
parameters of confidence for STRING were restricted in 
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order to reduce the amount of data while maintaining the 
most reliable interactions. The active prediction methods 
taken into account for STRING predictions were: experi-
ments, co-expression, neighborhood and databases; a con-
fidence score > 0.4 – medium confidence; 1st and 2nd 
shell no more than 20 interactors and no more than 5 in-
teractors, respectively. We did not consider the direction 
of each protein interaction, and the duplicate edges and 
self-interactions were removed from the results.

Topological analysis of the protein interaction net-
work. The network analysis includes three fundamental 
parameters that allow for nodes in a network to be evalu-
ated: Connectivity degree (k), betweenness centrality (BC) 
and closeness centrality (CC). The most basic characteris-
tic of a node in a network is its degree (k), which repre-
sents the number of interactions (links) the node has to 
other nodes (Barabási & Oltvai, 2004). Nodes with a high-
er k value are called hubs and therefore are the principal 
agents in the interaction network, affecting the network´s 
function and stability (Patil et al., 2010). The BC value is 
an indicator of a node’s centrality in the network. It is the 
fraction of the number of non-redundant shortest paths 
(SP) that pass through each node, which measures how 
often the node is located on the shortest path between 
other nodes. The SP refers to the path with the smallest 
number of links between the selected nodes in a network 
(Raman, 2010). Nodes with higher BC are called bottle-
necks and indicate that a large number of SP in the net-
work passes through them. The CC of a node is defined 
as the inverse of the average length of the SP to/from all 
the other nodes in the graph. The node with the highest 
CC value is usually the topological center of the network 

(Ran et al., 2013). In the present study, a network analyzer 
Cytoscape 3.6.1 (Shannon et al., 2003; Assenov et al., 2008) 
was used to compute the properties of the whole net-
work. In order to classify the hub and bottleneck proteins, 
we divided all of the proteins into four categories, as pro-
posed in the literature (Yu et al., 2007): (1) nonhub–non-
bottlenecks (small k and low BC); (2) hub–nonbottlenecks 
(large k but low BC); (3) nonhub–bottlenecks (small k but 
high BC); and (4) hub–bottlenecks (large k and high BC).

Construction of the backbone network of the AML 
PPI network. In order to construct a backbone network, 
we selected proteins from the giant network within the 
top 10% BC values, excluding those not within the main 
network. Based on graph theory, the protein bottlenecks 
are nodes with SP, therefore these control communication 
among other nodes in the giant network (Yu et al., 2007). 
This information can give us an approximation about the 
shortest pathway from the giant network that could be ac-
tivated in chemotherapy resistance in AML patients.

Construction of a subnetwork consisting of all the 
shortest paths between the seed proteins. In order to 
construct a subnetwork in which the 16 seed proteins are 
connected directly or indirectly with the minimum number 
of connections, we found the SP between seed proteins 
using the PesCa 3.0.8 plug-in for Cytoscape (Scardoni et 
al., 2015). The subnetwork was constructed using the SP 
that interconnects seed proteins with a size of less than 6 
nodes, thus helping to determine the principal pathways 
and biological processes between seed proteins related to 
chemotherapy resistance in AML patients.

Gene ontology and pathway analysis. We per-
formed Gene Ontology (GO) enrichment analysis and 

Table 1. List of the 16 seed proteins used to construct the PPI network

Uniprot Symbol Protein Name References

P01589 IL2RA Interleukin-2 receptor subunit alpha (aka CD25) (Yabushita et al., 2018; Nakase et al., 2018; 
Allan et al., 2018)

P02792 FTL Serum ferritin light chain (Tachibana et al., 2018; Bertoli et al., 2019)

P07900 HSP90AA1 Heat shock protein HSP 90-alpha (Fredly et al., 2012; Ma et al., 2017)

Q8N465 D2HGDH D-2-hydroxyglutarate dehydrogenase (Wang et al., 2013; Janin et al., 2014; Balss 
et al., 2016)

P00749 PLAU Urokinase-type plasminogen activator (Mustjoki et al., 2000; Li et al., 2014)

P39060 COL18A1 Collagen alpha-1(XVIII) chain - (cleaved to endostatin) (Aref et al., 2008)

O95750 FGF19 Fibroblast growth factor 19 (Su et al., 2015)

P10451 SPP1 Osteopontin (Liersch et al., 2012; Chen et al., 2017)

P02671 FGA Isoform 1 of fibrinogen alpha chain precursor (Krug et al., 2010)

P02776 PF4 Platelet factor 4 (He et al., 2010)

P15531 NME1  
(NM23-H1) Nucleoside diphosphate kinase A (Okabe-Kado et al., 2009a, 2009b; Lilly et 

al., 2011)

P01375 TNF Tumor necrosis factor (Hu et al., 2019)

O15123 ANGPT2 Angiopoietin-2 (Kümpers et al., 2008)

P61769 B2M Beta 2 microglobulin (Tsimberidou et al., 2008; Melillo et al., 
1992)

Q9NZQ7 CD274
(PD-L1) Programmed cell death 1 ligand 1 (Ma et al., 2017)

P17931 LGALS3 Galectin-3 (Gao et al., 2017a, 2017b)
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pathway annotation of the networks with ClueGO (Plug-
in for Cytoscape) (Bindea et al., 2009) and pathway an-
notation with Reactome (Croft et al., 2011).

RESULTS AND DISCUSSION

Seed proteins

The literature search yielded 16 candidate serum pro-
teins associated with unfavorable prognosis (in terms of 
poor response to treatment, poor overall survival, short 
complete remission, and relapse): interleukin-2 recep-
tor subunit alpha (IL2RA), serum ferritin light chain 
(FTL), heat shock protein HSP 90-alpha (HSP90AA1), 
D-2-hydroxyglutarate dehydrogenase (D2HGDH), uroki-
nase-type plasminogen activator (PLAU), collagen alpha-
1(XVIII) chain (COL18A1), fibroblast growth factor 19 
(FGF19), osteopontin (SPP1), isoform 1 of fibrinogen 
alpha chain precursor (FGA), platelet factor 4 (PF4), 
nucleoside diphosphate kinase A (NME1), tumor ne-
crosis factor (TNF), angiopoietin-2 (ANGPT2), beta 2 
microglobulin (B2M), programmed cell death 1 ligand 1 
(CD274), and galectin-3 (LGALS3). These seed proteins 
are listed in Table 1 and were used to construct the gi-
ant protein–protein interaction (PPI) network.

Giant network

The PPI network was constructed with 16 seed pro-
teins associated with unfavorable prognosis in Acute 
Myeloid Leukemia, and was found to have 340 nodes 
connected by 2223 edges (Fig. 1 and Table 2). Each of 

the nodes represents a protein, while the edges between 
nodes represent interactions between proteins. As can be 
seen in Fig. 1, there is one main network and two small-
er ones, with D2HGDH and FTL as seed proteins that 
are not connected to the main network.

The proteins in the network were classified into four 
categories according to their k and BC values, as de-
scribed in the Methods section. This analysis revealed that 
184 nodes were nonhub-nonbottleneck (low k and low 
BC), 122 nodes were hub-nonbottlenecks (high k and low 
BC), 13 nodes were nonhub-bottlenecks (low k and high 
BC), and 55 nodes were hub-bottlenecks (high k and high 
BC), the latter being of the most interest as they are the 
most central and well-connected nodes in the network.

In order to identify the most central node in the net-
work, we compared these k and BC values and found 
two proteins of interest with the highest k and BC: 
PTPN11 (BC 0.186; k 37) and UBC (BC 0.130; k 44). 
As PTPN11 (also called Shp2) has the highest BC it was 
selected as the central node in the network.

Backbone network

We retrieved PTPN11, HSP90AA1, and the other 26 
proteins within the top 10% largest degree (k) or highest 
BC and considered them as the hubs or bottlenecks and 
constituted the backbone of the giant network (Fig. 2). 
Of the 28 nodes comprising the backbone network, 6 
are original seed proteins (PLAU, FGA, COL18A1, 
HSP90AA1, LGALS3, PF4). PTPN11 had the high-
est BC of the network (Table 3) meaning that it is the 
main node controlling the flow of information through 

Table 2. Network topology measures.

Description Giant network Backbone network SP network

Number of nodes (N) 340 28 81

Number of edges (E) 2223 73 409

Average degree (k) 13.076 24.678 20.160

Average BC (BC) 0.0112 0.0935 0.0419

Average CC (CC) 0.2738 0.2672 0.2547

Figure 1. Protein-protein interaction network of proteins associated with unfavorable prognosis in Acute Myeloid Leukemia. 
PTPN11 is the central node in the network, represented by a cyan triangle. Betweenness centrality (BC), connectivity degree (k).
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the network, followed by CDK1 and HSP90AA1, while 
UBC had the highest k.

Gene Ontology (Go) analysis was performed on the 
Backbone network to identify which GO terms (biologi-
cal process and molecular function) were over or under-
represented in the network (Table 4).

Shortest path network

The subnetwork of the shortest paths between the 
seed proteins was made up of 81 nodes and 409 edg-
es. In Fig. 3, it can be observed that the 16 seed pro-
teins are related to each other through intermediate 
nodes and there is a shorter pathway through which 
these proteins are related, which suggests that there 
are common signaling pathways between these pro-
teins that could explain the biological context associ-
ated with an unfavorable prognosis in patients with 
AML. Just like in the Backbone network, in the SP 
network PTPN11 had the highest BC (0.186) while 

UBC had the highest k (44), and both values are well 
above the average. Topological analysis of this net-
work is summarized in Table 2.

The GO analysis was performed on the SP network 
to identify which GO terms (biological process and 
molecular function) were over or under-represented 
in the network (Table 5). In terms of signaling path-
ways, the main pathways represented were signaling 
by EGFR in cancer, MET activated PI3K/AKT sign-
aling, adaptive immune system, signaling by receptor 
tyrosine kinases, cytokine signaling in Immune system, 
diseases of signal transduction, hemostasis, PI3K-Akt 
signaling pathway, MAPK family signaling cascades, 
signaling by Interleukins, pathways in cancer, pro-
teoglycans in cancer, cell surface interactions at the 
vascular wall, platelet activation, signaling and aggre-
gation, acute myeloid leukemia, and chronic myeloid 
leukemia.

The backbone and SP networks were analyzed with 
Reactome and KEGG Pathway databases, and the 

Table 3. Proteins in the backbone network.

N° Protein BC k CC N° Protein BC k CC

1 PTPN11 0.187 37 0.321 18 CDC37 0.079 16 0.283

2 CDK1 0.164 17 0.234 19 CTSL1 0.077 2 0.211

3 HSP90AA1 0.161 32 0.287 20 PLAU 0.065 20 0.289

4 PIK3CA 0.137 33 0.319 21 LCK 0.062 35 0.287

5 F2 0.133 27 0.292 22 PDGFRB 0.052 17 0.307

6 UBC 0.131 44 0.293 23 PF4 0.051 24 0.214

7 NRAS 0.129 33 0.326 24 HLA-DRB1 0.050 30 0.278

8 PIK3R1 0.122 31 0.319 25 FGB 0.050 26 0.258

9 HGF 0.113 23 0.290 26 FGA 0.050 26 0.258

10 FGG 0.112 31 0.263 27 PPBP 0.046 23 0.214

11 LGALS3 0.112 20 0.253 28 ITGB1 0.044 26 0.199

12 ITGAV 0.087 22 0.223

13 COL18A1 0.083 22 0.197

14 ITGB3 0.083 22 0.223

15 CD74 0.081 7 0.234

16 HRAS 0.080 26 0.321

17 SHC1 0.079 19 0.289

Seed proteins are in bold

Figure 2. Backbone network. 
The central node in the network is represented by a cyan triangle.
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main pathways represented were signaling by EG-
FRvIII in cancer, diseases of signal transduction, cell 
surface interactions at the vascular wall, platelet acti-
vation, signaling and aggregation, MAPK family sign-
aling cascades, proteoglycans in cancer, MET activates 
PI3K/AKT signaling, acute myeloid leukemia, and 
chronic myeloid leukemia (Table 6).

Importance of PTPN11

PTPN11 encodes the Shp2 non-receptor protein-ty-
rosine that is involved in cytokine receptor and recep-
tor tyrosine kinase signaling (Rehman et al., 2018). This 
protein is required for the complete activation of the 
RAS-ERK pathway in response to growth factors and 
cytokines, in addition to modulating the PI3K-AKT and 

Table 4. Gene ontology analysis of the backbone network.

Biological Process Associated Proteins

Platelet activation F2, FGA, FGB, FGG, ITGB3, LCK, PF4, PIK3CA, PIK3R1, PTPN11

Positive regulation of protein kinase B signaling CD74, HGF, HSP90AA1, ITGB1, LCK, PDGFRB, PIK3CA, PIK3R1, 
PTPN11

Heterotypic cell-cell adhesion CD74, FGA, FGB, FGG, ITGAV, ITGB1, ITGB3, LCK

Negative regulation of extrinsic apoptotic signaling pathway FGA, FGB, FGG, HGF, ITGAV, LGALS3, PF4

Platelet degranulation FGA, FGB, FGG, HGF, ITGB3, PF4, PPBP

Extrinsic apoptotic signaling pathway via death domain receptors FGA, FGB, FGG, HGF, LGALS3, PIK3R1

Fibrinolysis F2, FGA, FGB, FGG, PLAU

Plasminogen activation FGA, FGB, FGG, PLAU

ERBB2 signaling pathway HSP90AA1, PIK3CA, PIK3R1, SHC1

Regulation of blood coagulation F2, FGA, FGB, FGG, PLAU

Regulation of hemostasis F2, FGA, FGB, FGG, PLAU

Molecular Function Associated Proteins

Fibronectin binding CTSL, ITGAV, ITGB1, ITGB3

Phosphotyrosine residue binding LCK, PIK3R1, PTPN11, SHC1

Protein phosphorylated amino acid binding LCK, PIK3R1, PTPN11, SHC1

C-X3-C chemokine binding ITGAV, ITGB1, ITGB3

CD4 receptor binding CD74, HLA-DRB1, LCK

Insulin receptor substrate binding PIK3CA, PIK3R1, PTPN11

MHC protein complex binding CD74, HLA-DRB1, HSP90AA1

Phosphatidylinositol 3-kinase binding LCK, PDGFRB, PIK3R1

Co-receptor activity ITGAV, ITGB1, ITGB3

Figure 3. Shortest path network. 
The central node in the network is represented by a cyan triangle.
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JAK-STAT pathways (Grossmann et al., 2010). Mutations 
in PTPN11 occur in approximately 6.6% of patients 
with AML (Chen et al., 2015) and lead to alterations in 
signaling pathways associated with the cell differentiation 
and growth. As this protein plays critical roles in he-
matopoiesis and leukemogenesis, myeloid and erythroid 
differentiation is affected in embryonic stem cells that 
express mutated Ptpn11 (Qu et al., 1997). It has been re-
ported that PTPN11 mutations cause an increase in the 
frequency of leukemic cells in both, humans and murine 
models (Chen et al., 2015; Deng et al., 2018). Shp2 also 
regulates apoptotic genes, and it has been reported that 
it increases the expression of Bcl2 and Mcl1. Patients 
who have mutations in Ptpn11, therefore, prove to be 
resistant to anti-Mcl1 drugs (Chen et al., 2015).

There are several in vitro and in vivo studies in the lit-
erature that have shown that Ptpn11 is a potential target 
for cancer treatment, specifically when there is drug re-
sistance. The potential for cancer treatment is observed 
in a study with transgenic mice containing a doxycy-
cline (Dox)-inducible PTP-defective Shp2 mutant; when 
the Shp2 activity is inhibited in these mice, this results 
in suppressed EGFR signaling and fewer/smaller hyper 
proliferative lesions (Schneeberger et al., 2015). In terms 
of drug resistance, an interesting study, published in 
2015 (Prahallad et al., 2015), revealed that when Ptpn11 

was knocked-down, BRAF mutant colon cancer cells 
that were previously resistant to treatment with selective 
BRAF inhibitors became sensitive to these drugs.

There are currently three Ptpn11 (Shp2) inhibitors 
that have been developed for patients with advanced 
solid tumors that have failed, are intolerant to (drug re-
sistance), or are considered ineligible for standard treat-
ments. These function in a similar manner, by binding 
to and inhibiting Shp2 signaling, which in turn inhibits 
the Ras-MAPK pathway that is often hyperactivated in 
cancer cells. These are: JAB-3068 (Jacobio Pharmaceuti-
cals Co.), RMC-4630 (Revolution Medicines, Inc. & Sa-
nofi), and TNO155 (Novartis). For each of these there 
are two registered clinical trials: JAB-3068 (ClinicalTri-
als.gov identifier: NCT03565003 and NCT03518554), 
RMC-4630 (ClinicalTrials.gov identifier: NCT03634982 
and NCT03989115), TNO155 (ClinicalTrials.gov iden-
tifier: NCT03114319 and NCT04000529). All of these 
are phase 1/2a clinical trials that are currently recruiting 
participants, with the aim of determining the maximum 
tolerated dose, as well as characterizing the safety, toler-
ability, and pharmacokinetics profile of these drugs.

Presently, there are no Ptpn11 (Shp2) inhibitors spe-
cifically aimed towards AML. However, there is a trial 
(ClinicalTrials.gov identifier: NCT03311815) sponsored 
by the PETHEMA Foundation, in which bone mar-

Table 5. Gene ontology analysis of the shortest path network.

Biological Process Associated Proteins

Tie signaling pathway ANGPT1, ANGPT2, TEK

Peptide antigen assembly with MHC protein complex CALR, HLA-DRA, HLA-DRB1

MHC protein complex assembly CALR, HLA-DRA, HLA-DRB1

Interleukin-2-mediated signaling pathway IL2RA, SHC1, STAT5A, STAT5B

Regulation of tau-protein kinase activity HGF, HSP90AA1, HSP90AB1, SOS1

Positive regulation of heterotypic cell-cell adhesion CD74, FGA, FGB, FGG, LCK, TNF

Response to interleukin-2 IL2RA, SHC1, STAT5A, STAT5B

Fibrinolysis APOH, F2, FGA, FGB, FGG, PLAU, PLAUR, THBS1

Plasminogen activation APOH, FGA, FGB, FGG, PLAU, THBS1

ERBB2 signaling pathway EGFR, ERBB2, HSP90AA1, PIK3CA, PIK3R1, SHC1, SOS1

Regulation of heterotypic cell-cell adhesion CD74, FGA, FGB, FGG, LCK, TNF

Blood coagulation, fibrin clot formation APOH, F13A1, F2, FGA, FGB, FGG

Molecular Function Associated Proteins

Oxidoreductase activity, acting on CH or CH2 groups, 
disulfide as acceptor RRM1, RRM2, RRM2B

Ribonucleoside-diphosphate reductase activity RRM1, RRM2, RRM2B

C-X3-C chemokine binding ITGAV, ITGB1, ITGB3

CD4 receptor binding CD74, FYN, HLA-DRB1, LCK

T cell receptor binding CD3E, CD3G, FYN, LCK

Insulin receptor substrate binding PIK3CA, PIK3R1, PTPN11

Platelet-derived growth factor receptor binding ITGA5, ITGB3, PDGFRA, PDGFRB

Nitric-oxide synthase regulator activity EGFR, HSP90AA1, HSP90AB1

MHC protein complex binding CD74, HLA-DRA, HLA-DRB1, HSP90AA1, HSP90AB1

Phosphatidylinositol bisphosphate kinase activity EGFR, ERBB2, FGF19, FGF2, FGFR2, FYN, HGF, LCK, PDGFRA, PDGFRB, PIK-
3CA, PIK3R1, PTPN11, SOS1, STAT5A

Fibronectin binding CTSL, ITGAV, ITGB1, ITGB3, THBS1

http://ClinicalTrials.gov
http://ClinicalTrials.gov
http://ClinicalTrials.gov
http://ClinicalTrials.gov
http://ClinicalTrials.gov
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row and peripheral blood samples from 500 AML pa-
tients will be taken at diagnosis and at resistance or first 
and subsequent relapses. These samples will be analyzed 
by Next Generation Sequencing (NGS) in order to se-
quence 26 consensus genes recurrently mutated in AML 
(ASXL1, HADH, CBL, CEBPA, DNMT3A, EZH2, 
FLT3, GATA2, IDH1, IDH2, JAK2, KIT, KRAS, MPL, 
MLL, NPM1, NRAS, PTPN11, RUNX1, SETBP1, 
SF3B1, SRSF2, TET2, TP53, U2AF1, WT1). With this 
data, it will be possible to determine which gene muta-
tions can be classified as the driver or passenger muta-
tions, and establish a diagnostic platform for rapid mo-
lecular diagnosis of the disease. As samples will be taken 
at resistance and relapse, this will also provide informa-
tion regarding which genes/proteins are associated with 
unfavorable prognosis, which could be useful for deter-
mining prognosis at time of diagnosis, thus informing 
treatment options.

CONCLUSIONS

This in silico analysis revealed 28 proteins that could 
be considered potential biomarkers of poor prognosis in 
AML, with PTPN11 as the main node controlling the 
flow of information through the network.

One of the biggest challenges in biomarker research 
is that more often than not, a single biomarker is shared 
by several pathologies; so rather than a single protein 
biomarker, a panel of biomarkers is required in order 
to achieve the overall level of specificity needed. There-
fore, this in silico approach is highly useful for inform-
ing which proteins could be included in such a panel, 
and which of these contribute significantly to the overall 
specificity and sensitivity.

It would be of great interest to perform a depend-
ency analysis on this proposed panel of 28 proteins, in 
order to determine which nodes have a positive or nega-
tive influence on other nodes, thus identifying activators 
and inhibitors of the network. Perturbation experiments 
can also help identify which nodes are essential to the 
network, by eliminating them and observing how the 
behavior of the network changes. This optimization of 
the panel will ensure prognostic precision, while keep-
ing costs down by avoiding unnecessary testing of bio-
markers that do not significantly contribute. Wet bench 
research is enhanced when computational analysis is in-
corporated.
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