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Pancreatic cancer is one of the most malignant tu-
mors of the digestive system, with insidious, rapid on-
set and high mortality. The 5-year survival rate is only 
10%. Therefore, in-depth exploration of the potential 
mechanism affecting the prognosis of pancreatic can-
cer, and search for biomarkers that can effectively pre-
dict the prognosis of pancreatic cancer are of practical 
clinical importance. The mRNA sequencing data, miRNA 
sequencing data, methylation data and SNP data of 
pancreatic cancer patients available in The Cancer Ge-
nome Atlas (TCGA) were used for analysis to identify 
biomarkers that significantly affect the prognosis for the 
patients. Finally, a prognostic prediction model was 
developed using principal component analysis (PCA) 
method. The genes that significantly affected the prog-
nosis of pancreatic cancer were as follows: 5 DmiRNAs 
(hsa-mir-1179, hsa-mir-1224, hsa-mir-1251, hsa-mir-129-1 
and hsa-mir-129-2), 6 DmRNAs&DMs&MethyCor data-
base entries (MAPK8IP2, CPE, DPP6, MSI1, IL20RB and 
S100A2), and FMN2 gene from differential expressed 
mRNAs and differential single-nucleotide polymorphism 
(DmRNAs&DSNPs) database. Prognostic index (PI)=∑iwi 
xi – 0.717716. A patient was predicted as high/low risk 
if the PI was larger/smaller than 0.034045. Our study re-
sulted in a comprehensive prognostic model for pancre-
atic cancer patients based on multi-omics analysis, which 
could offer better guidance for the clinical management 
of patients with early-stage pancreatic cancer.
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INTRODUCTION

Pancreatic cancer is one of the most malignant di-
gestive system tumors with insidious and rapid onset 
and high mortality. Due to the lack of specific clini-
cal manifestations and clinical biomarkers at the early 
stage, most pancreatic cancer patients are diagnosed 
at an advanced stage, accompanied by distal metasta-
sis and extensive local invasion, and the 5-year survival 
rate is only 10% (Siegel & Miller, 2018). Therefore, in-
depth exploration of the potential disease mechanisms 
and identification of biomarkers that can effectively 

predict the prognosis of pancreatic cancer is of practi-
cal clinical significance.

Numerous research proved that the biological behav-
ior of pancreatic cancer is complex and involves various 
mechanisms, such as epigenetics, mutations, non-coding 
RNA regulation etc. Increasing evidence shows that meth-
ylation plays an important role in the tumorigenesis of 
pancreatic cancer. Arginine methylation of MDH1 inhibits 
the malignant progression of pancreatic cancer by inhibit-
ing glutamate metabolism (Wang et al., 2016). Moreover, 
one study reported that the MLL1-H3K4me3 pathway 
mediates pancreatic cancer immune evasion by regulat-
ing PD-L1 expression (Minassian et al., 2017). It is well-
known that mutations of KRAS and P53 play an impor-
tant role in the tumorigenesis of pancreatic cancer. In ad-
dition, mutation of PRSS1 was found to be involved in 
the malignancy of pancreatic cancer (Yi et al., 2016). The 
crucial role of miRNA in the tumorigenesis of pancreatic 
cancer has been gradually discovered, as a result of the 
continuous development of sequencing technology. The 
mir-135b-5p promotes migration and invasion of pancreatic 
cancer cells by targeting NR3C2 (Zhang et al., 2017), and 
mir-138-5p inhibits autophagy of pancreatic cancer cells by 
regulating SIRT1 (Tian et al.  2017).

Therefore, it is a relatively limited approach to search 
for biomarkers that affect the prognosis of pancreatic 
cancer based on single-omics. In this study, multiple sets 
of data (mRNA, miRNA, methylation and single-nucleo-
tide polymorphism (SNP)) for pancreatic cancer available 
in The Cancer Genome Atlas (TCGA) were downloaded 
for integrated analysis to identify more solid biomarkers.

MATERIALS AND METHODS

Patients’ datasets. Center for Cancer Genomics 
(CCG) collected tumor tissues and normal tissues (fro-
zen or paraffin-embedded) from patients who choose to 
participate. Raw data were obtained by high-throughput 
sequencing and normalized, with the following analysis 
of molecular and pathology data. Multi-omics data of 
pancreatic cancer were downloaded from TCGA data-
base (https://www.cancer.gov/) and included 183 cases 
of mRNA data (RNASeq V2), 182 cases of miRNA data 
(IlluminaHiSeq miRNAseq), 195 cases of Illumina Hu-
man Methylation450 BeadArray, and 170 cases of SNP 
data. Samples were selected for the study according to 
the criteria: 1) pancreatic cancer patients were patho-
logically diagnosed, 2) patients records contained all four 
kinds of data and 3) the follow-up data were complete. 
Finally, 150 patients were selected for our study. All data 
analyzed in this study was obtained from pancreatic ade-
nocarcinoma tissues. The median of 150 patients’ overall 
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survival (OS) time was 15.81 months. The patients were 
divided into L/S cohorts with long/short survival time, 
according to the median OS, and each cohort contained 
75 samples. We also analyzed the correlation between 
the survival time and additional radiation, pharmaceutical 
therapy and histological type using the chi-square test. 
To further illustrate the underlying mechanism affecting 
the prognosis of pancreatic cancer patients we compared 
the multi-omics differences between the two cohorts.

Data processing. Differential mRNA and miRNA ex-
pression was analyzed using DESeq2 (Anders & Huber, 
2010) function (P<0.05, |logFC|>1). Each probe value 
for the methylation data was expressed as the β value 
(β=U/(M+U+1)), where M is the methylated probe 
signal strength and U is the unmethylated probe signal 
value. The limma package (Ritchie et al. 2015) was used 
for differential expression analysis (P<0.05, |logFC|>1), 
and MethylMix package (Gevaert 2015) was used to ana-
lyze the correlation between gene methylation level and 
mRNA expression value (Pearson correlation coefficient 
test, R>0.5, P<0.05). Chi-square test (P<0.05) was used 
to test the significance of differences in the frequency of 
gene mutation between the L/S cohorts.

Functional enrichment analysis. We used Database 
for Annotation, Visualization and Integrated Discovery 
(DAVID) website (https://david.ncifcrf.gov/; Reczko et 
al., 2012; Paraskevopoulou et al., 2013) for gene ontol-
ogy (GO) function and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) for pathway enrichment analysis 
(P<0.05).

Protein-protein interaction network construction. 
The mRNA interaction data came from the STRING 
database (https://string-db.org/; Szklarczyk et al., 2019) 
and the mRNA-miRNA interaction data was derived 

from DIANA tools (Reczko et al., 2012; Paraskevopou-
lou et al., 2013). This interaction information was im-
ported into Cytoscape software (Shannon et al., 2003) to 
build an integrated interaction network.

Kaplan-Meier survival analysis and prognostic 
model construction. Kaplan-Meier survival analysis was 
performed for all significantly differentially expressed 
mRNA/miRNA to further screen for biomarkers which 
significantly correlated with OS of pancreatic cancer pa-
tients. Principal component analysis (PCA) method was 
used to construct the prediction model based on 12 
genes, and the receiver operating characteristic (ROC) 
curve and area under the curve (AUC) were used to test 
the performance of the classifier.

RESULTS

Differential expression analysis of mRNA and miRNA

Patients, 150, were divided into L/S cohorts according 
to the median survival time which was 15.85 months. 
DESeq2 package was used to identify the differentially 
expressed mRNA and miRNA between L and S co-
hort (P<0.05, |logFC|>1). 1,255 significantly differen-
tially expressed mRNAs (DEmRNAs) and 33 miRNAs 
(DEmiRNAs) were found (Fig. 1).

Methylation analysis

The limma package was used to identify significantly 
differentially methylated genes in the methylation data, 
and the results revealed that there were 9,601 signifi-
cantly differentially methylated genes (DMethGs) be-

Figure 1. Differential expression analysis of mRNA and miRNA data.
(A) Patients were divided into L/S cohort according to survival time (median survival time: 15.85 months). The volcano plots of DmRNAs 
(B) and DmiRNAs (C).

https://david.ncifcrf.gov/
https://string-db.org/
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tween L and S cohort (P<0.05, |logFC|>1) (Fig. 2A). 
Further, MethylMix package was used to analyze the 
relationship between methylation data and mRNA ex-
pression data, and revealed that the methylation de-
gree of 551 genes was significantly correlated with 
their mRNA expression level (MethyCor) (P<0.05, |r| 

> 0.5; Fig. S1). Based on the intersection of DEmR-
NAs, DMethGs and MethyCor datasets, we identified 
15 common genes (Fig. 2B) (Table 1). Therefore, we 
could infer that the significantly differential mRNA ex-
pression of these 15 genes is caused by their signifi-
cantly differential methylation.

Figure 2. Methylation analysis. 
(A) Differentially methylated genes between L/S cohorts. The outmost circle represents the heatmap of DMs. The middle/inner circle rep-
resents the median β value of L/S cohorts. (B) Venn plot of DmRNAs, DMs, and MethyCor genes.

Table 1. 15 genes which significantly differentially expressed and methylated between L/S cohorts, moreover, the mRNA expression 
level significantly correlated with methylation level.

Symbol
DmRNAs DMs Cor

log2FC p_val log2FC p_val R p_val

AGBL4 1.682 0.000048 -1.345 0.0399131 -0.507 0

CALML3 1.6327 0.0009 -1.382 0.0081808 -0.607 0

CPE 1.4863 0.000071 -1.676 0.0007348 -0.567 0

DPP6 1.1228 0.0002 -1.448 0.0245278 -0.557 0

IL20RB -1.5246 0.00036 1.447 0.0103424 -0.592 0

MAPK8IP2 1.4143 0.000127 -1.259 0.0393195 -0.507 0

MSI1 1.5301 0.00004 -1.386 0.0196918 -0.66 0

PCSK1 1.7477 0.000218 -1.455 0.0430081 -0.573 0

PIWIL1 1.0241 0.009 -1.405 0.0404999 -0.609 0

PODXL2 1.0138 0.000354 -1.261 0.0052812 -0.517 0

RAB26 1.2709 0.000306 -1.256 0.0049592 -0.551 0

S100A2 -1.1196 0.0034 1.18 0.0274155 -0.606 0

SOX15 -1.224 0.000158 1.194 0.0031299 -0.641 0

TDRD1 1.467 0.000732 -1.436 0.0100102 -0.633 0

TFF3 1.1042 0.0013 -1.273 0.0055974 -0.72 0
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SNP Analysis

For SNP data, firstly, we calculated the mutation rate 
of all genes in the SNP dataset. The 20 highest muta-
tion-frequency genes, including KRAS and TP53, were 
shown in Fig. 3A. Then, 31 genes (DSNPs) were cho-
sen by comparing the mutation frequency between L 
and S cohort (Chi-square test, P<0.05). Combining the 
results from DmRNAs and DSNPs datasets revealed 4 
genes (SLC8A3, C6orf118, RIMS2 and FMN2) not only 
with a significant difference in mutation frequency but 
significantly differentially expressed at mRNA level (Ta-
ble 2).

Prognostic model construction

Kaplan-Meier survival analysis was performed on 
the candidate biomarkers (P<0.05), and 12 genes were 
identified that significantly affected the prognosis of the 
patients: 5 miRs in DmiRNAs dataset (hsa-mir-1179, hsa-
mir-1224, hsa-mir-1251, hsa-mir-129-1 and hsa-mir-129-2), 
6 genes in DmRNAs & DMs & MethyCor dataset 
(MAPK8IP2, CPE, DPP6, MSI1, IL20RB and S100A2), 
and FMN2 in DmRNAs & DSNPs dataset. Then, we 
plotted the survival curves of these 12 genes as shown 
in Fig. 4.

We used principal component analysis to build a 
prognostic model based on the 12 genes. The weight 
coefficient of each gene is shown in Table 3. The 
prognostic formula was as follows: prognostic index 
(PI)=∑iwi xi–0.717716 (w=weight, x=gene expression 

Figure 3. Differential mutation analysis of SNP data. 
(A) Waterfall plot showing the top 20 most frequently mutated genes. (B) Venn plot of significantly differentially expressed and mutated 
genes.

Table 2. 4 genes which mRNA expression levels and mutation rates were significantly different.

Symbol
DEGs SNP

log2FC p_val χ2 test

C6orf118 1.5828 0.0003 0.0426

FMN2 1.4025 0.000503 0.0426

RIMS2 1.274 0.000554 0.012

SLC8A3 1.3192 0.000363 0.0426

Table 3. Weight of biomarkers in prognostic model.

Symbol Weights (wi)

hsa-mir-1179 -0.011749

hsa-mir-1224 -0.008891

hsa-mir-1251 -0.014756

hsa-mir-129-1 -0.003759

hsa-mir-129-2 -0.003719

MAPK8IP2 -0.015838

CPE -0.023251

DPP6 -0.020969

MSI1 -0.024968

FMN2 -0.025318

IL20RB 0.074813

S100A2 0.124481
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value). A patient was predicted as high/low risk if the 
PI was larger/smaller than 0.034045.

High AUC for the prognostic model (AUC=0.683) 
and low P-value with the high hazard ratio (HR) in fit-
ted Cox proportional hazards model (P=0.035) suggest 
that this can be a better prognostic model for pancre-
atic cancer patients (Fig. 5).

Functional enrichment analysis

The0 target genes of 5 miRNAs that significantly af-
fected the prognosis of pancreatic cancer patients were 
used for querying DIANA tools (Reczko et al., 2012; 
Paraskevopoulou et al., 2013). 1,437 target genes were 
identified with combined score>0.7 as the criterion, and 
46 of them were DmRNAs. Then, the interaction rela-

Figure 4. Survival plots of the 12 biomarkers which are strongly associated with the OS of pancreatic cancer patients. 
(A–E) Survival plots of 5 DmiRNAs. (F–K) Survival plots of 6 genes from DmRNAs & DMs & MethyCor dataset. (L) Survival plot of FMN2 in 
DmRNAs & DSNPs dataset. All biomarkers plotted with p-value for Kaplan–Meier plot (log-rank test). 

Figure 5. Survival plot for the prognostic model. 
(A) Survival plot for high- vs low-risk cohort. (B) ROC plot for the prognostic model. 
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tionship of these 46 target genes was obtained using the 
STRING database (Szklarczyk et al., 2019). The results 
from DIANA and STRING were integrated to construct 
the PPI network graph using Cytoscape software (Shan-
non et al., 2003), providing a better visual understanding 
of the relationship between these miRs and target genes 
(Fig. 6A).

To further understand the function of the 12 bio-
markers, GO function and KEGG pathway enrichment 
analysis was performed on 53 genes (46 target genes and 
6 DmRNAs & DMs & MethyCor dataset entries and 1 
entry from DmRNAs & DSNPs dataset) using DAVID 
website. The enrichment results were as follow: biologi-

cal process (BP) contained ion transmembrane transport 
and excitatory postsynaptic potential; cellular component 
(CC) contained plasma membrane and integral compo-
nent of membrane; molecular function (MF) contained 
mRNA binding and extracellular-glutamate-gated ion 
channel activity. The most significantly enriched KEGG 
pathways were Retrograde (Fig. 6B) endocannabinoid 
signaling and Serotonergic synapse.

Patients’ treatment

150 patients selected for our study included 145 pan-
creas adenocarcinoma ductal and 5 pancreas colloid 
carcinoma. Patients had undergone additional radiation, 
pharmaceutical therapy or not, and the survival time of 
the patients was not correlated to the treatment (Ta-
ble 4).

DISCUSSION

Pancreatic cancer is one of the most malignant tu-
mors that seriously threaten human health. Despite the 
continuous medical progress, and the invention of new 
treatment methods and agents, the 5-year survival rate 
of pancreatic cancer patients is still inferior. Therefore, 
there is an urgent need to find new biomarkers that can 
effectively predict the prognosis and overall survival for 
pancreatic cancer patients.

Previous studies identified many genes involved in 
pancreatic cancer tumorigenesis through various mecha-
nisms and significantly affecting the prognosis of pan-
creatic cancer. ZNF281 promotes growth and invasion 
of pancreatic cancer cells by activating Wnt/β-catenin 
signaling (Qian et al., 2017). SNX6 predicts poor prog-
nosis and contributes to the metastasis of pancreatic 
cancer cells via activating epithelial-mesenchymal transi-
tion (Hu et al., 2018). It was reported that methylation of 
SULT1E1, IGF2BP3 and MAP4K4 is significantly corre-
lated with prognosis of pancreatic cancer patients (Chen 
et al., 2019). Hideyuki Hayashi and others (Hayashi et al., 
2017) found that the number of mutations in KRAS, 
CDKN2A, TP53, and SMAD4 can be used to predict 
the prognosis of pancreatic cancer (Hayashi et al., 2017). 
Furthermore, their study revealed that miRNA is also 
significantly correlated with the prognosis of pancreatic 
cancer (Shi et al., 2018).

However, all the above traditional studies based on 
single omics failed to substantially benefit and signifi-
cantly improve OS for pancreatic cancer patients. There-
fore, our study was different from the traditional ap-
proach, being an integrated multi-omics analysis and re-

Figure 6. PPI network and functional enrichment plot. 
(A) PPI network of 5 DmiRNAs and their target genes. The red 
dots represent miRs and green dots represent the target genes. 
The thickness of interaction lines represents the combined score. 
(B) The circular plot represents the functional enrichment of 46 
target genes and 7 biomarkers.

Table 4. The correlation between relative overall survival and patient treatments was analyzed using chi-square test.

Variable n Relative overall survival c2 p value

Long Short

Additional pharmaceutical therapy 0.43 0.62

Yes 76 36 40

No 74 39 35

Additional radiation therapy 0.12 1.00

Yes 141 71 70

No 9 4 5

Histological type 0.21 1.00

Pancreas adenocarcinoma ductal 145 72 73

Pancreas colloid carcinoma 5 3 2
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sulted in identifying 12 effective biomarkers and building 
a prognostic model based on these 12 biomarkers.

Mitogen-Activated Protein Kinase 8 Interacting Pro-
tein 2 (MAPK8IP2), also known as JNK-Interacting Pro-
tein 2 (JIP2), is thought to be involved in the regulation 
of the c-Jun amino-terminal kinase (JNK) signaling path-
way (Yasuda et al., 1999). JNK signaling pathway plays 
an important role in tumorigenesis (Ma et al., 2017).

Liu and others (Liu et al., 2014) reported that Car-
boxypeptidase E (CPE), a member of the M14 family of 
metallocarboxypeptidases, can promote tumor prolifera-
tion in pancreatic cancer cells and mouse models (Liu et 
al., 2014), and the mRNA expression value of CPE in 
pancreatic cancer patients was higher than that in adja-
cent tissues according to TCGA database. Interestingly, 
our study found that higher CPE level predicts longer 
survival time of pancreatic cancer patients. Therefore, we 
speculate that the function of CPE in pancreatic cancer 
patients is not only pro-cancer or anti-cancer, and its 
complex mechanism of action needs further study to be 
fully elucidated. Classically, Dipeptidyl Peptidase Like 6 
(DPP6) is described as a membrane protein thought to 
be involved in voltage-gated potassium channels func-
tion. It was found that DPP6 also participates in ma-
lignancy of esophageal adenocarcinoma (Xi & Zhang, 
2017). MSI1 (Musashi RNA Binding Protein 1) was long 
used as a marker of stem cells (Okano et al., 2002), and 
was reported to be involved in tumorigenesis of several 
cancers (Kharas & Lengner, 2017). The function of In-
terleukin 20 Receptor Subunit Beta (IL20RB) is to form 
the heterodimeric receptor for Interleukin 20 (IL20) 
with Interleukin 20 Receptor Subunit Alpha (IL20RA). 
Besides, it was reported to be involved in the JAK-
STAT pathway (Blumberg et al., 2001), which plays an 
important role in various tumors (Waldmann & Chen, 
2017; Tiacci et al., 2018). Syed Haider et al. reported that 
IL20RB is correlated with shorter survival of pancreatic 
patients, which was highly consistent with our findings, 
indicating that IL20RB is an indicator of pancreatic can-
cer prognosis (Haider et al., 2014). S100 calcium-binding 
protein A2 (S100A2) is a member of the S100 family of 
proteins containing 2 EF-hand calcium-binding motifs. 
Many studies suggested that S100A2 plays an oncogenic 
role in pancreatic cancer (Ohuchida et al., 2007; Bachet 
et al., 2013; Ji et al., 2014). Furthermore, our study con-
firmed these earlier results and used it as an essential el-
ement in the prognostic model. Formin-2 (FMN2) is a 
member of the formin family, and it is mainly involved 
in the organization of actin cytoskeleton (Peng & Liou, 
2012). Studies reported that FMN2 is involved in the 
malignancy of various tumors (Jin et al., 2017; Li et al., 
2018).

The discovery of miRNA opened a brand-new area 
in the bioscience research. More and more functions of 
miRs have been discovered, especially in the various bio-
logical behaviors of tumors. miRNAs are detectable in 
biofluids including urine, cerebrospinal fluid and blood, 
which make them highly available and accurate biomark-
ers for the prediction of prognosis of cancer patients 
(Hayes et al., 2014). In this study, therefore, miRNAs 
were included in the exploration of biomarkers of pan-
creatic cancer. The results showed that 5 miRNAs (hsa-
mir-1179, hsa-mir-1224, hsa-mir-1251, hsa-mir-129-1 and hsa-
mir-129-2) significantly affected the prognosis of pancre-
atic cancer patients. The functional enrichment analysis 
showed that target genes were significantly enriched in 
ion transport and mRNA binding function.

With an increasing number of neoplasm research, ion 
transport was found to play an important role at every 

stage of the cancer disease. Moreover, ion transport is 
involved in every step of tumorigenesis, proliferation, in-
vasion and metastasis (Djamgoz et al., 2014), and even 
plays an indispensable role in the process of destroying 
the cancer cells by the immune cells (Panyi et al., 2014).

Furthermore, we found that the target genes of these 
miRs are significantly enriched in mRNA binding, which 
means these target genes are heavily involved in each 
step of mRNA metabolism. mRNA metabolism is in 
turn vital for tumorigenesis.

In summary, our study found that gene expression pat-
terns were significantly discriminated in pancreatic cancer 
patients with different survival time. We used multi-om-
ics analysis to identify 7 mRNAs and 5 miRNAs as bio-
markers, all of which were significantly correlated with 
the prognosis of pancreatic cancer patients. In addition, 
the previous studies confirmed that these biomarkers 
are involved in various malignant processes, such as tu-
morigenesis, proliferation or metastasis through different 
mechanisms, but their specific mechanism of action in 
pancreatic cancer still needs to be elucidated. Finally, the 
PCA method was used to construct the prognostic pre-
diction model based on the 12 biomarkers. This model 
may provide guidance for the clinical management of pa-
tients with early-stage pancreatic cancer.
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