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Diabetic retinopathy (DR), as the most frequent micro-
vascular complication of diabetes mellitus (DM), causes 
vision loss and blindness in adults worldwide with in-
creasing incidence. MicroRNAs (miRNAs) are involved in 
the regulation of DR. However, the role of miR-542-5p is 
still unknown. Here, we demonstrate that miR-542-5p is 
down-regulated in patients with DR and in high-glucose 
(HG)-treated retinal pigment epithelial cells. Moreover, 
miR-542-5p overexpression inhibits apoptosis in retinal 
pigment epithelial cells exposed to HG. The interaction 
between miR-542-5p and co-activator-associated argi-
nine methyltransferase 1 (CARM1) is confirmed. MiR-542-
5p mimics decrease the CARM1 level and miR-542-5p 
inhibitor increases the CARM1 level. Additionally, CARM1 
overexpression promotes the miR-542-5p-mediated ap-
optosis in HG-treated retinal pigment epithelial cells. In 
summary, the data suggest that miR-542-5p may sup-
press apoptosis in retinal pigment epithelial cells via tar-
geting CARM1, which provides a new therapeutic target 
for the treatment of patients with DR.
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INTRODUCTION

Diabetes is considered the most common metabolic 
disease in the world with increasing mortality (Ravindran 
et al., 2015; Wild et al., 2004). Diabetic retinopathy (DR), 
as the most frequent microvascular complication of dia-
betes mellitus (DM), is characterized by hemorrhages, li-
pid exudates and neovascularization (Shao & Yao, 2016; 
Barot et al., 2013). DR mainly causes vision loss and 
blindness in adults worldwide (Chong et al., 2017; Klein, 
2007; Cheung et al., 2010). The incidence of DR has 
been increasing annually worldwide (Wang et al., 2012; 
Klein et al., 2017). Laser photocoagulation treatment 
shows no significant improvement in visual acuity in the 
long term (Liu et al., 2019). Therefore, it is necessary to 
further investigate more efficient therapeutic strategies to 
improve the treatment of patients with DR.

MicroRNAs (miRNAs) represent a group of highly 
conserved short (19-25 nucleotides) non-coding RNAs 
that bind to the 3’-untranslated region (UTR) of mRNAs 

to suppress gene expression in various cell processes (Li 
& Liu, 2011; Bartel, 2004; Hwang & Mendell, 2007). 
Accumulating evidence has shown that miRNAs are in-
volved in the regulation of DR (Hagiwara et al., 2013, 
Wu et al., 2014). For example, miR-590-3p has been 
found to elevate cell viability and repress pyroptosis in 
DR (Gu et al., 2019). Moreover, miR-203-3p represses 
oxygen-induced retinopathy-induced retinal angiogenesis 
and improves proliferative diabetic retinopathy (Han et 
al., 2020). A previous study also shows that miR-542-
5p plays a suppressive role in neuroblastoma (Bray et 
al., 2011). Zhu and others (Zhu et al., 2020) found that 
miR-542-5p mediates osteosarcoma tumorigenesis and 
enhances proliferation in osteosarcoma. These findings 
indicate that miR-542-5p may take part in the develop-
ment of various diseases. Interestingly, Wu and others 
(Wu et al., 2012) observed that miR-542-5p is abnormally 
expressed in DR. Therefore, we hypothesize that miR-
542-5p may play an important role in the development 
of DR.

Co-activator-associated arginine methyltransferase 1 
(CARM1) is a coactivator of transcriptional activation 
and forms homodimers, which is necessary for catalytic 
activity (Chen et al. 1999; Higashimoto et al., 2007). Re-
cently, CARM1 was found to be increased in patients 
with diabetes (Porta et al., 2019). Additionally, CARM1 
is elevated and participates in the regulation of high-glu-
cose (HG) treated human retinal pigment epithelial cells 
(Kim et al., 2014). These results suggest that CARM1 
may be closely associated with the development of DR.

Here, we explore the role of miR-542-5p and CARM1 
in HG-treated human retinal pigment epithelial cells. 
Our study suggests that miR-542-5p may be involved in 
the development of DR by targeting CARM1.

MATERIALS AND METHODS

Clinical samples. A total of 79 patients with DM (34 
patients without DR and 45 patients with DR) and 40 
healthy volunteers were from Traditional Chinese Medi-
cal Hospital of Xinjiang Uygur Autonomous Region. 
The blood samples from patients were collected and 
then stored at –80°C until use. In this study, all patients 
signed informed consent. The experiments conform to 
the World Medical Association Declaration of Helsinki 
and were approved by the Ethics Committee of Tradi-
tional Chinese Medical Hospital of Xinjiang Uygur Au-
tonomous Region.

Cell culture, treatment and transfection. The hu-
man retinal pigment epithelial line ARPE-19 was pur-
chased from ATCC (Manassas, VA, USA), and cultured 
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in DMEM containing 10% fetal bovine serum at 37°C 
under 5% CO2. The cells were treated with 5 mM glu-
cose (Control) or 25 mM glucose (HG) for 24 h. Ad-
ditionally, the cells were transfected with miR-542-5p 
mimics or negative control mimics (NC mimics) for 
24 h and then exposed to HG for another 24 h.

Quantitative real-time PCR (qRT-PCR). Total 
RNA was extracted using TRIzol reagent (Takara, Da-
lian, China). Then, cDNAs were synthesized through 
Taqman MicroRNA assays (Beyotime, Shanghai, China). 
The qRT-PCR was performed, and miR-542-5p and 

CARM1 levels were determined via SYBR Green (Ta-
kara, Dalian, China). The relative expression of miR-542-
5p and CARM1 was calculated via the 2−ΔΔCT method. 
The primers were as follows:

Western blot analysis. Protein was extracted via 
RIPA lysis buffer (Beyotime, Shanghai, China). Then, 
the protein concentration was quantified using BCA 
Kit (Takara, Dalian, China). Proteins were separated by 
SDS-PAGE and wet-transferred onto PVDF membrane 
(Beyotime, Shanghai, China). After blocking in 5% non-
fat milk for 1 h, the membrane was incubated with pri-
mary antibodies such as CARM1 (1:5000), Cleaved cas-
pase 3 (1:500), caspase 3 (1:1000), Bcl-2 (1:1000) and 
β-actin (1:5000) (all from Abcam, Shanghai, China), at 
4C overnight. β-actin was used as the internal control. 
Subsequently, the membrane was incubated with the 
secondary antibody (1:3000, Beyotime, Shanghai, China) 
for 1 h at 37C. The bands were visualized via enhanced 

chemiluminescence (ECL) reaction solution (Takara, Da-
lian, China).

Cell apoptosis analysis. Cells (3×104/ml) were col-
lected and resuspended in 1× Annexin binding buffer 
(500 μl), and stained with 5 μl Annexin-V-FITC and 
5 μl propidium iodide (PI) for 25 min. Then, cell apop-
tosis was measured via flow cytometry (BD, Japan).

Luciferase reporter assay. TargetScan software 
(http://www.targetscan.org/vert_72/) predicted that 
miR-542-5p could target CARM1. The wild-type 3’-UTR 
sequence of CARM1 containing the miR-542-5p binding 
site, and the mutant 3’-UTR sequence of CARM1 lack-
ing the miR-542-5p binding site were inserted into the 
pmirGLO reporter vector (pmirGLO-CARM1-WT and 
pmirGLO-CARM1-MUT). The ARPE-19 cells were co-
transfected with pmirGLO-Report constructs and miR-
542-5p mimics or NC mimics using Lipofectamine 2000 
(Beyotime, Shanghai, China) for 48 h. The firefly and 
Renilla luciferase activities were examined through the 
Dual-Luciferase Reporter Assay System. The Renilla/
firefly luciferase ratio was analyzed.

Statistical analysis. Data were presented as mean 
± S.D. GraphPad Prism 6.0 was used to carry out sta-
tistical analysis. Statistical significance was assessed using 
Student’s t-test and one-way ANOVA followed by the 
Bonferroni test. The correlation between the two groups 
was confirmed through Pearson’s correlation analysis. 
P<0.05 was considered statistically significant.

RESULTS

The effect of HG treatment on apoptosis of retinal 
pigment epithelial cells

We first measured the level of miR-542-5p in pa-
tients with DR and HG-treated retinal pigment epithe-
lial cells. qRT-PCR showed that the miR-542-5p level is 
lower in diabetes mellitus (DM)+non-diabetic retinopa-
thy (NDR) group than in the Healthy group, and miR-
542-5p is reduced in patients with DM and DR com-
pared with patients with DM. Moreover, the miR-542-5p 
in DM+NDR group is reduced compared with that in 
the Healthy group (Fig. 1A). The results from qPCR as-
say also show that miR-542-5p is reduced in HG-treated 
ARPE-19 cells compared with control (Fig. 1B). Cell 

Name Sequences (5’-3’)

miR-542-5p F: CTCCTCTCGGGGATCATCAT

R: TATGGTTGTTCACGACTCCTTCAC

CARM1 F: TTGATGTTGGCTGTGGCTCTGG

R: ATGGGCTCCGAGATGATGATGTCC

U6 F: CTCGCTTCGGCAGCACATATACT

R: ACGCTTCACGAATTTGCGTGTC

GAPDH F: GCACCGTCAAGGCTGAGAAC

R: GGATCTCGCTCCTGGAAGATG

Figure 1. The effect of HG treatment on apoptosis of retinal pigment epithelial cells.
(A, B) MiR-542-5p mRNA level was measured using qRT-PCR. (C) Cell apoptosis analysis was performed via Annexin-V-FITC/PI staining. (D) 
Western blot analysis verified Cleaved caspase 3 and Bcl-2 protein levels. n=3. **P<0.01.
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apoptosis analysis reveals that apoptosis is enhanced in 
HG-treated ARPE-19 cells (Fig. 1C). Western blot analy-
sis indicates that HG treatment causes the elevation of 
Cleaved caspase 3 protein level and the reduction of Bcl-
2 protein level in ARPE-19 cells (Fig. 1D). These find-
ings imply that miR-542-5p might be related with apop-
tosis in HG-treated retinal pigment epithelial cells.

MiR-542-5p inhibits apoptosis in HG-treated retinal 
pigment epithelial cells

To explore the effect of miR-542-5p on the apoptosis 
of HG-treated retinal pigment epithelial cells, we over-
expressed miR-542-5p in HG-treated ARPE-19 cells. 
The qRT-PCR assay demonstrates that HG treatment 
results in the decrease of miR-542-5p, whereas miR-

542-5p mimics significantly elevate miR-542-5p level in 
HG-treated ARPE-19 cells (Fig. 2A). Annexin-V-FITC/
PI staining shows that cell apoptosis is enhanced after 
HG treatment, whereas miR-542-5p mimics repress cell 
apoptosis in ARPE-19 cells treated with HG (Fig. 2B). 
Consistently, western blot analysis reveals that miR-542-
5p mimics inhibit the HG-induced increase of Cleaved 
caspase 3 and HG-induced reduction of Bcl-2 protein 
level in ARPE-19 cells (Fig. 2C). These data indicate that 
miR-542-5p suppresses apoptosis of HG-treated retinal 
pigment epithelial cells.

CARM1 is verified as a target of miR-542-5p

We predict that CARM1 is a target of miR-542-5p 
using Targetscan analysis (Fig. 3A). The interaction be-

Figure 2. MiR-542-5p inhibits apoptosis in HG-treated retinal pigment epithelial cells.
(A) The qRT-PCR was used to measure miR-542-5p mRNA level. (B) Annexin-V-FITC/PI staining was carried out to examine cell apoptosis. 
(C) Cleaved caspase 3 and Bcl-2 protein levels were measured by western blot analysis. n=3. **P<0.01.

Figure 3. CARM1 is verified as a target of miR-542-5p.
(A) Targetscan analysis predicted that CARM1 was a target of miR-542-5p. (B) The interaction between miR-542-5p and CARM1 was con-
firmed through luciferase reporter assay. (C) MiR-542-5p mRNA level was measured via qRT-PCR. (D, E) CARM1 mRNA level and protein 
level were measured using qRT-PCR and western blot analysis, respectively. n=3. **P<0.01.
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tween miR-542-5p and CARM1 is identified using the 
luciferase reporter assay. The results show that the lucif-
erase activity is decreased in ARPE-19 cells co-transfect-
ed with miR-542-5p mimics and CARM1 WT 3’-UTR 
luciferase reporter vector, whereas there is no effect on 
the luciferase activity of ARPE-19 cells co-transfected 
with miR-542-5p mimics and CARM1 MUT3’-UTR lu-
ciferase reporter vector (Fig. 3B). qRT-PCR results dem-
onstrate that miR-542-5p mimics increase the miR-542-
5p level, whereas miR-542-5p inhibitor decreases the 
miR-542-5p level (Fig. 3C). Western blot analysis and 
qRT-PCR show that miR-542-5p mimics repress the 
CARM1 level and miR-542-5p inhibitor increases the 
CARM1 level (Fig. 3D, E). These results indicate that 
CARM1 is a target of miR-542-5p and is negatively regu-
lated by miR-542-5p.

CARM1 overexpression attenuates the miR-542-5p-
mediated apoptosis in HG-treated retinal pigment 
epithelial cells

To test whether CARM1 can participate in the reg-
ulation of apoptosis induced by miR-542-5p in HG-
treated retinal pigment epithelial cells, we performed 
Annexin-V-FITC/PI staining. The results show that 
miR-542-5p mimics inhibit apoptosis, and CARM1 over-
expression promotes apoptosis in HG treated ARPE-19 
cells. Moreover, CARM1 overexpression enhances miR-
542-5p-mediated apoptosis in HG-treated ARPE-19 cells 
(Fig. 4A). Additionally, western blot analysis proves that 
miR-542-5p mimics lower the CARM1 and Cleaved 
caspase 3 protein levels, and increase the Bcl-2 protein 

level, whereas CARM1 overexpression has. the opposite 
effect on these protein levels. Further, CARM1 overex-
pression rescues these protein levels induced by miR-
542-5p mimics in HG-treated ARPE-19 cells (Fig. 4B). 
The data imply that CARM1 overexpression elevates the 
miR-542-5p-mediated apoptosis in HG-treated retinal 
pigment epithelial cells.

DISCUSSION

Here, we demonstrate that miR-542-5p is reduced in 
patients with DR and in HG-treated retinal pigment epi-
thelial cells. Functional analysis indicated that miR-542-
5p represses apoptosis in retinal pigment epithelial cells 
in the presence of HG. Moreover, the interaction be-
tween miR-542-5p and CARM1 was identified. Further, 
CARM1 overexpression promotes miR-542-5p-mediated 
apoptosis in retinal pigment epithelial cells exposed to 
HG. The data imply that miR-542-5p may function in 
the apoptosis of retinal pigment epithelial cells, which 
contributes to the treatment of patients with DR.

Increasing evidence has revealed that abnormal expres-
sion of miRNAs has a close association with DR. Some 
miRNAs are upregulated. For example, miR-218 expres-
sion is increased, and it represses proliferation as well as 
stimulates apoptosis in human retinal pigment epithelium 
cells (Yao et al., 2019). MiR-29b-3p is elevated in patients 
with DR, and enhances the ratio of Bax/Bcl-2 in human 
retinal microvascular endothelial cells (Zeng et al., 2019). 
Conversely, some miRNAs have the opposite role. For 
instance, miR-7 has been demonstrated to inhibit apop-

Figure 4. CARM1 overexpression attenuate the miR-542-5p-mediated apoptosis in HG-treated retinal pigment epithelial cells.
(A) Cell apoptosis was examined through Annexin-V-FITC/PI staining. (B) CARM1, Cleaved caspase 3 and Bcl-2 protein levels were deter-
mined using western blot analysis. n=3. *P<0.05. **P<0.01.
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tosis and alleviate HG-induced damage in retinal pig-
ment epithelial cells (Yang et al., 2019). MiR-142-5p is 
decreased in retinal tissues of DR rats and HG-treated 
human retinal endothelial cells, and improves patho-
logical effects in retinal tissues (Liu et al., 2020). Like 
the later studies, our research verifies that miR-542-5p 
is suppressed in patients with DR and in HG exposed 
ARPE-19 cells. Moreover, miR-542-5p represses HG-
induced apoptosis in ARPE-19 cells, accompanied by the 
reduction of the Cleaved caspase 3 protein level and el-
evation of the Bcl-2 protein level. These findings imply 
that miR-542-5p may be closely connected with the de-
velopment of DR.

Previously, miRNAs were found to regulate the devel-
opment of DR through targeting the 3’-UTR of mRNAs. 
For example, Fu and Ou (Fu & Ou, 2020) found that 
miR-152 is reduced and represses HG-induced angiogen-
esis in human retinal endothelial cells through targeting 
LIN28B. Chen and others (Chen et al., 2019 discovered 
that miR-126 is decreased, and stimulates proliferation as 
well as suppresses apoptosis in HG-induced human reti-
nal endothelial cells via targeting interleukin-17A). Inter-
estingly, our study shows that miR-542-5p could target 
CARM1. Additionally, miR-542-5p down-regulates the 
CARM1 expression level. More importantly, accumulat-
ing evidence has shown that the function of miR-542-5p 
may vary in different diseases. For example, miR-542-
5p has been found to alleviate fibroblast activation, and 
suppress proliferation and migration through targeting 
integrin α6 (Yuan et al., 2018). Conversely, Cheng  and 
others (Cheng et al., 2015) have reported that miR-542-
5p stimulates proliferation in osteosarcoma through tar-
geting HUWE1. These findings suggest that miR-542-5p 
may regulate development of some diseases via target-
ing the target gene. Further analysis in this study proves 
that CARM1 overexpression increases the miR-542-5p-
mediated apoptosis in retinal pigment epithelial cells 
treated with HG. Notably, CARM1 was reported to be 
enhanced in HG-treated retinal pigment epithelial cells, 
and to promote apoptosis in retinal pigment epithelial 
cells (Kim et al., 2014). Moreover, Porta and others (Por-
ta et al., 2019) demonstrated that the CARM1 expression 
level is high in type 2 diabetes. Our study is consistent 
with previous research. The data suggest that miR-542-
5p may take part in the inhibition of apoptosis in retinal 
pigment epithelial cells through targeting CARM1.

However, other miRNAs may also participate in 
regulating the progression of DR by targeting CARM1. 
Moreover, the clinical application of miR-542-5p was not 
evaluated, and the effect of miR-542-5p on apoptosis in 
patients with DR by targeting CARM1 was not explored 
in our study. Therefore, to further investigate the mecha-
nism underlying miR-542-5p in patients with DR, more 
experiments will be carried out in the future.

In summary, the current study shows that miR-542-5p 
is down-regulated and CARM1 is up-regulated in HG-
treated retinal pigment epithelial cells and in patients 
with DR. MiR-542-5p participates in the progression of 
DR via targeting CARM1 (Fig. 5), which could be useful 
for the treatment of patients with DR.
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