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Chemically, the Nod factors (NFs) are lipochitooligosac-
charides, produced mainly by bacteria of the Rhizobium 
genus. They are the main signaling molecules involved 
in the initiation of symbiosis between rhizobia and leg-
ume plants. Nod factors affect plant tissues at very low 
concentrations, even as low as 10–12 mol/L. They induce 
root hair deformation, cortical cell division, and root 
nodules’ formation in the host plant. At the molecular 
level, the cytoskeleton is reorganized and expression of 
genes encoding proteins called nodulins is induced in re-
sponse to Nod factors in the cell. Action of Nod factors 
is highly specific because it depends on the structure of 
a particular Nod factor involved, as well as the plant re-
ceptor reacting with it.
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INTRODUCTION

The symbiosis between Rhizobium and legume plants 
is established under conditions of limited nitrogen avail-
ability in the soil, in a form available for plants. Atmos-
pheric nitrogen fixation by rhizobia occurs only in highly 
specialized plant organs, the so-called root nodules. Se-
lection of both symbiosis partners is specific, which is 
possible due to mutual exchange and recognition of 
molecular signals released into the rhizosphere by po-
tential symbiosis partners: the plant and the bacterium. 
For example, Rhizobium leguminosarum bv. trifolii can es-
tablish symbiosis only with clover (Trifolium spp.) (Per-
ret et al., 2000). Exceptionally, the strain Sinorhizobium sp. 
NGR234 is capable of initiating symbiosis with about 
112 different types of legumes (Pueppke & Broughton, 
1999; Black et al., 2012). Initiation of symbiosis is a mul-

tistage process. Plants secrete specific flavonoid com-
pounds into the soil which act on rhizobia on the ba-
sis of positive chemotaxis (Caetano-Anolles et al., 1988; 
Dharmatilake & Bauer, 1992). Flavonoids attract bacteria 
to the roots and cause expression of their specific genes, 
called nodulation genes, that are responsible for synthesis 
of the Nod factors. Biological activity of the Nod fac-
tors boils down to initiation of cell division in the roots 
of the host plant and formation of an infection thread 
through which rhizobial cells penetrate into the forming 
root nodules. Generally, bacterial symbionts provide the 
plant with nitrogen compounds and the plant provides 
bacteria with carbon sources.

SYNTHESIS AND STRUCTURE OF THE NOD FACTORS

The specificity of choosing a plant partner in sym-
biosis depends on structure of the Nod factors pro-
duced by a given specie, and even on the Rhizobium 
strain. Rhizobial nod genes are organized into operons 
which are most often located within the symbiotic plas-
mid (pSym), or occasionally on the bacterial chromo-
some forming the so-called symbiotic islands (Sullivan 
et al., 2002; Turlough, 2002; Nandasena et al., 2007), e.g. 
in Mesorhizobium loti (Kaneko et al., 2000; Ramsay et al., 
2009) or Bradyrhizobium japonicum (Kaneko et al., 2002). 
Specific plant flavonoids act as positive inducers of the 
nod genes’ transcription. After binding of the rhizobial 
NodD protein to a specific flavonoid, there is a change 
in the spatial structure of the nod gene promoter, at-
tachment of RNA polymerase and initiation of the nod 
genes’ transcription (Chen et al., 2005). 

A common feature of all lipochitooligosaccharides is 
a backbone made of three to five N-acetylglucosamine 
residues, which are N-acylated at the non-reducing end 
(Fig. 1) (Long, 1996; Perret et al., 2000; Spaink, 2000; 
D’Haeze & Holsters, 2002). In bacteria, the common 
nodABC genes are responsible for synthesis of the 
lipochitooligosaccharide core. The nodC gene encodes 
chitolipooligosaccharide synthase, called N-acetyl-d-
glucosamine transferase, which combines N-acetylglu-
cosamine monomers into a single molecule using β-1,4 
glycosidic bonds (Spaink, 2000; D’Haeze & Holsters, 
2002). In turn,  product of the nodB gene is a deacety-
lase which removes acetyl residues at the non-reducing 
end of the Nod factor. N-acyltransferase, encoded by 
the nodA gene, attaches a fatty acid at the non-reduc-
ing end. Common genes are necessary for the symbio-
sis process because their mutations result in the Nod¯ 
phenotype, i.e. the inability of bacteria to produce 
Nod factors and to establish symbiosis (Jacobs et al., 
1985; Debelle et al., 1986). These common genes are 
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extremely conserved and found in all rhizobia, except 
for photosynthetic Bradyrhizobium (Giraud et al., 2007). 
However, the individual Nod factors differ by the pres-
ence of various additional chemical groups, for example 
fucose, sulfate, acetate, etc., for which the host-specific 
nod  genes (hsn nod genes) are responsible (Mergaert et 
al., 1997). The hsn nod genes also correspond to fatty 
acid modifications, which, depending on the rhizobium 
strain, may differ in chain length and saturation level. 
Examples of enzymes encoded by the hsn nod genes 
are: beta-ketoacyl synthase (nodE), O-acetyltransferase 
(nodL), glucosamine synthase (nodM), ATP-sulfurlase 
(nodP), sulfotransferase (nodH), O-acetyltransferase 
(nodX) (Heidstra & Bisseling, 1996; Downie, 1998). The 
specific substituents on the chitin skeleton of Nod fac-
tors are a kind of key that allows formation of the root 
nodules and their infection by a proper Rhizobium strain 
(Yates et al., 2011).

Mutations in host specificity genes do not exclude 
the synthesis of Nod factors, but rather change their 
structure. This may result in a change in the specificity 
of the mutated strain relative to the plant host (Ler-
ouge et al., 1990; Schultze et al., 1994; Dénarié et al., 
1996).

It has been shown that some legumes and non-leg-
umes can also establish symbiosis with fungi, and this 
relationship is initiated by fungal lipochitooligosaccha-
rides called the Myc factors (Maillet et al., 2011). Myc 
factors have an almost identical structure to the  rhizo-
bial Nod factors and differ only in additional substitu-
ents. Mycorrhiza is already about 400 million years old, 
and the symbiosis of legume plants with Rhizobium ap-
peared less than 60 million years ago, hence the suppo-
sition that the rhizobial nod genes originated from the 
fungal myc genes (Sprent & James, 2007; Maillet et al., 
2011).

PERCEPTION OF THE NOD FACTORS

The Nod factors not only act on legumes, but stud-
ies on receptors for lipochitooligosaccharides are con-
ducted mainly on this group of plants. Such plants as 
Lotus japonicus (Lj) and Medicago truncatula (Mt) are the 
best known in this respect (Oldroyd & Downie, 2004). 
Membrane receptors that bind the Nod factors con-
tain the LysM domain, e.g. LjNFR1 and LjNFR5 (Lo-

tus japonicus), PsSYM10/PsSYM2A (Pisum sativum), and 
MtNFP/MtLYS3/4 (Medicago truncatula) (Limpens et al., 
2003; Madsen et al., 2003; Radutoiu et al., 2003; Arri-
ghi et al., 2006; Indrasumuran, 2007; Indrasumuran et 
al., 2009). The LysM domain is characteristic for chitin 
binding proteins, and chitin is also the core of the Nod 
factor structure (Steen et al., 2003). The intracellular 
receptor domain is a kinase, which in the subsequent 
phosphorylation cycle transmits the signal initiated by 
the Nod factor to other proteins, also of the kinase 
nature. Next,  transmembrane proteins (MtDMI2, 
LjSYMRK or PsSYM19) containing a leucine rich re-
gion (LRR – leucine rich repeats) are activated (Endre 
et al., 2002; Stracke et al., 2002; Mitra et al., 2004; Ca-
poen et al., 2005; Limpens et al., 2005; Indrasumaran, 
2007). As a result, calcium channels are opened in the 
cell membrane. The influx of Ca2+ ions leads to local 
depolarization of the root hair cell membrane (Felle 
et al., 1999). Ca2+ ions interact with cytoplasmic pro-
teins (MtDMI3, PsSYM9) (Lévy et al., 2004; Mitra et 
al., 2004), which are probably transported to the cell 
nucleus, where they activate the NSP1 and NSP2 tran-
scription factors in Medicago truncatula (Kaló et al., 2005; 
Smit et al., 2005; Hirsh et al., 2009), LjNIN in Lotus 
japonicus (Schauser et al., 1999; Borisov et al., 2003), and 
PsSYM35 in Pisum sativum (Lee & Hirsh, 2006, Fer-
guson et al., 2010). In this way, transcription of genes 
encoding the plant early nodulin proteins (ENODs) is 
initiated.

THE NOD FACTORS ACTIVATE SOME PLANT GENES

Plant genes induced by the Nod factors are involved 
in the early stages of symbiosis and the root nodule 
formation. These genes encode proteins from the nod-
ulin group (Skøt, 2003). The so-called early nodulins in-
clude, among others, ENOD12 and ENOD5 proteins, 
which are present in root hair cells and in the infection 
zone of the forming nodules (Lee & Hirsh, 2006). In 
turn, genes called late nodulins are activated after com-
pletion of the nodule morphogenesis and are involved 
in binding of the atmospheric nitrogen by bacteroids. 
An example of late nodulin is oxygen-binding leghemo-
globin, which prevents the N2 reduction process from 
stopping. In addition, glutamine synthetase uses NH4

+, 
the N2 reduction product, for glutamine synthesis. Oth-

Figure 1. Chemical structure of Nod factors (Long, 1996; Perret et al., 2000; Spaink, 2000; D’Haeze et al., 2002).
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er nodulins, such as the sucrose synthase, export pho-
tosynthesis products to bacteroids (Skøt, 2003).

NOD FACTORS INDUCE MITOTIC DIVISIONS IN PLANT 
TISSUES 

Already 15 minutes after perception of the Nod fac-
tors, the cell membrane is depolarized and Ca2+ ions os-
cillate in epidermal cells (Erhardt et al., 1996; Sieberer et 
al., 2009; Murray, 2011).

About 1–3 hours later, root hair deformation and curl-
ing occurs – a necessary stage when rhizobia enter the 
root system (Heidstra et al., 1994; Sieberer et al., 2009; 
Murray, 2011). Nod factors induce the development of 
an infection thread (IT) in the cortical cells of the root; 
It grows towards the root bark and rhizobia can infect 
the nodules through it. Regular oscillations of intracellu-
lar Ca2+ concentrations, streaming of the cytoplasm and 
changes in the cytoskeleton structure  cause formation 
of the infection thread. Rhizobia are enclosed in a space 
bound by the wall of deformed root hair. The cell wall 
surrounding bacteria is partially degraded and the cell 
membrane is concave; around it, a new cell wall of plant 
origin is produced and finally the tubular structure of 
the infection thread is formed (Brewin, 2004). Nod fac-
tors cause differentiation of the root cortex cells, which 
leads to resumption of mitotic divisions. In this way, a 
nodule primordium is created. Rhizobial cells penetrate 
plant cells by endocytosis. There, they are surrounded by 
a peribacteroid membrane forming symbiosomes, inside 
which bacteria undergo physiological and morphological 
transformation into a bacteroid form (Brewin, 2004).

In addition, it has been observed in laboratory ex-
periments that purified rhizobial Nod factors, thanks to 
their mitogenic properties, accelerate seed germination 
and stimulate growth of the root and shoot biomass of 
legumes (e.g. soybean) and non-legumes (e.g. corn, cot-
ton) (Souleimanov et al., 2002; Prithiviraj et al., 2003). 
Rhizobial Nod factors have been also proven to be mor-
phogens in in vitro plant tissue experiments. These stud-
ies were conducted with such plants as Daucus carota (de 
Jong et al., 1993), Nicotiana tabacum (Schmidt et al., 1993), 
and Picea abies (Dyachok et al., 2000). Nod factors had 
demonstrated biological activity at very low concentra-
tions (10–9–10–12 M).

NOD FACTORS PLAY A ROLE IN THE ROOT NODULE 
ORGANOGENESIS

Development of a root nodule requires mitotic activa-
tion of the cortical root cells, which leads to the forma-
tion of a nodule primordium. We distinguish 2 types of 
nodules in legume plants – determinate (limited) and inde-
terminate (unlimited) (Popp & Ott, 2011), which depend 
on proliferative properties of the plant host cells (Terpolil-
li et al., 2012; Kondorosi et al., 2013). Determinate nodules 
develop on the roots of Phaseolus vulgaris and Lotus japon-
icus, they do not have active meristem and do not show 
steady growth. In turn, in the apical region of the indeter-
minate nodules, there is an active meristem, and therefore 
the nodules continue to grow and lengthen. Indeterminate 
nodules occur in temperate zone plants, e.g. Medicago sati-
va, M. truncatula, Vicia sativa and Pisum sativum.

This meristem undergoes mitotic divisions throughout 
the period of the nodule’s functioning, thanks to which 
newly emerging cells can be constantly infected by rhizo-
bia, and the zones are visible in the cross-section of the 
wart (Vasse et al., 1990; Timmers et al., 2000, Diouf et 

al., 2003; Kereszt et al., 2011; Popp & Ott, 2011). These 
zones differ in the degree of advancement of the sym-
biosis process and the diversity of bacteroids.

NOD FACTORS ARE THE MANIPULATORS OF 
PHYTOHORMONES’ METABOLISM

Phytohormones are the main regulators of plant growth. 
According to many studies, hormone biosynthesis is regu-
lated by the Nod factors (Buhian & Bensmihen, 2018). It 
is known that several auxin signalling genes are activated 
in plants after a 24 h Nod factor treatment (Breakspear et 
al., 2014). In M. truncatula genome, many auxin-regulated 
genes are stimulated or antagonized by Nod factors (Herr-
bach et al., 2017). Generally, Nod factors can manipulate 
plant hormone levels. There are many synergistic effects 
of Nod factors and auxins on the transcription process 
of numerous hormone biosynthesis genes, for example 
an auxin biosynthesis tryptophan aminotransferase-related 
(TAR2) homolog (Herrbach et al., 2017).

Nod factor signalling also  influences auxin transport. 
Application of specific Nod factors can modify auxin 
gradients, which was measured by the GH3:GUS re-
porter gene in white clover (Mathesius et al., 1998). In 
the case of M. truncatula plants, Nod factor application 
or infection by S. meliloti cells inhibited auxin transport 
from root to shoot in the first 24 h and this observa-
tion coincided with the very earliest cortical cell divisions 
(Ng et al., 2015). It was suggested that the Nod  factors 
caused inhibition of acropetal auxin transport and proba-
bly this is unique to the process of indeterminate nodule 
organogenesis (Ng & Mathesius, 2018).

Gibberellins were also found to play a role in con-
trolling the early steps of symbiosis. It was shown that 
after 24 h Nod factor treatment of M. truncatula root 
hairs, both metabolic and biosynthetic genes of gibberel-
lins were induced (Breakspear et al., 2014; Jardinaud et 
al., 2016). In addition, Nod factors caused activation of 
gibberellin biosynthesis in soybean roots (Hayashi et al., 
2012).

It has been repeatedly demonstrated that cytokinins 
play a role during the process of nodule organogenesis 
and infection thread formation (Jardinaud et al., 2016). 
Accumulation of bioactive cytokinins was also shown in 
the root of M. truncatula after 3 h Nod factor treatment, 
and this was dependent on the Nod factor signalling 
gene MtDMI3 (van Zeijl et al., 2015). Several genes from 
the trans-zeatin metabolic network were modulated in 
root hairs after a 24 h Nod factor treatment, but bioac-
tive cytokinins’ level has not occurred in root hairs after 
Nod factor application (Jardinaud et al., 2016).

Scientists highlight the regulatory role of ethylene in 
the early symbiotic steps (Oldroyd et al., 2001; Penmetsa 
et al., 2008). Nod factors induced transcription of sev-
eral ethylene biosynthetic genes, for example MtACS1 
and MtACS2 in M. truncatula (van Zeijl et al., 2015). Also, 
MtACS3 was synergistically regulated by a 10 h treatment 
with a combination of Nod factors and auxins (Herr-
bach et al., 2017). In contrast, NF-dependent negative 
regulation of ethylene biosynthesis was observed in soy-
bean roots (Hayashi et al., 2012). All of these data show 
that Nod factors induce synthesis of ethylene which is a 
negative regulator of rhizobial infection.

NOD FACTORS IN AGRICULTURAL PRACTICE

Inoculation of legume seeds using rhizobia is one of 
the oldest agrobiotechnological methods (Lindström et 
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al., 2010). Inoculant bacteria are usually selected from 
the soil population of a given agricultural region, which 
is due to the specificity of the symbiosis between rhizo-
bia and legumes. 

Traditional rhizobial vaccines containing live rhizobial 
cells have a beneficial agrotechnical effect only when 
local rhizobial populations are few or nonexistent due 
to the lack of a compatible plant host and the vaccine 
strain does not face strong competition (Streeter, 1994; 
Skorupska et al., 2010). Legume plants have been culti-
vated for a long time, and their wild relatives also grow 
outside agricultural areas, which results in a high number 
of Rhizobium strains in soils. In this case, it is preferable 
to use isolated, purified Nod factors in the crop. Apply-
ing Nod factors directly to seeds increases the number 
of root nodules, which are an additional habitat for in-
digenous rhizobia, and accelerates germination and plant 
growth (Prithiviraj et al., 2003; Macchiavelli & Belles-Ma-
rino, 2004; Kidaj et al., 2011; Podleśny et al., 2014; Siczek 
et al., 2014). This leads to an increase in the amount of 
bound nitrogen even at low symbiotic yields of individu-
al strains in the soil population.

There is a clear need to select potential vaccine strains 
characterized by both, high atmospheric nitrogen binding 
activity and competitiveness against indigenous popula-
tions (Brockwell et al., 1995), but also high efficiency in 
production of the Nod factors (Skorupska et al., 2010).

CONCLUSIONS

Many years of research into initiation of the Rhizo-
bium – legume plants symbiosis have shown that the 
symbiosis performance can be stimulated and improved 
by manipulation of bacterial (Nod factor) and plant (fla-
vonoids) molecular signals. Application of the isolated 
Nod factors on seeds helps to bypass the problem of 
competition between strains used in microbial vaccines 
and indigenous strains. The phenomenon of competition 
observed inside the soil population of different Rhizo-
bium strains is very complex and not all factors affect-
ing it have been already explained. Therefore, it seems 
reasonable to search for and select Rhizobium strains not 
only highly effective in the process of nitrogen binding, 
but also in production of the Nod factors. It should be 
remembered that Nod factors are strong stimulators of 
mitotic division, also acting in a universal manner on 
meristems of non-legume plants. Acceleration of seed 
germination, seedling growth and expansion of the root 
system due to application of the isolated Nod factors is 
a rescue approach for agriculture in the face of drought 
periods that recur every year. Therefore there is a need 
to test preparations containing Nod factors on numerous 
non-legume crops.
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