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Purpose. Early infantile epileptic encephalopathy (EIEE) 
57 belongs to a group of encephalopathies with early-
onset and characterised by severe electroencephalogram 
abnormalities, seizures, developmental delay and intel-
lectual disability. Method. We carried out Whole Exome 
analysis using Next Generation Sequencing (NGS) and 
bioinformatic analysis performed to find mutation as-
sociated with the patient phenotypes. The effect of the 
mutation on protein structure analysed by PolyPhen2 
and Swissmodel ExPASy. Results. In this study, we evalu-
ated two unrelated Turkish males diagnosed with EIEE 
type 57 to investigate the genetic cause of this disease. 
Whole exome sequencing revealed mutations in KCN2 
gene, which is a member of Potassium channels (KCN) 
gene family associated with epileptic encephalopathies. 
Two mutations, c.545A>T (p.Asn182Ile and c.2638C>A 
(p.Leu880Met) were reported here as a novel mutation. 
Conclusions. Our findings implicate the genotype-phe-
notype correlation of these mutations. Furthermore, the 
computational analysis showed their effect on protein 
binding site and function suggesting their role in the de-
velopment of early infantile epileptic encephalopathy 57.
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INTRODUCTION

Early infantile epileptic encephalopathy (EIEE) is au-
tosomal dominant and is identified by phenotypic char-
acteristics including intractable seizures and severe cogni-
tive impairment and/or developmental delay (Berg et al., 
2010). Occurrence of the EE (epileptic encephalopathy) 
was found frequent in some countries (Hino-Fukuyo 
et al., 2009). Moreover, difficulties of patients’ mainte-
nance and care, high possibilities of comorbidities, and 
short life-span (Khan & Baradie, 2012) create devastat-
ing scenario for patients and their families. Various ge-
netic abnormalities in regulatory proteins and ion chan-
nels have been detected as causatives of EE (McTague et 
al., 2016). Although development of NGS (next genera-
tion sequencing) has opened new door into diagnosis of 
genetic impairments, more than 60% of EOEE remains 

undiagnosed. Therefore, diagnosis of other genetic caus-
es must be taken into account to facilitate therapies.

Functional abnormalities in ion channels, particularly 
potassium (K+) channels due to mutation in potassium 
channels gene family (KCN), are shown to contribute to 
impaired neurological functions (D’Adamo et al., 2013). 
Developmental and epileptic encephalopathies in the 
form of refractory seizures and frequent epileptic activ-
ity have been reported with KCN mutations (Scheffer et 
al., 2017). KCN gene family encode broad spectrum of 
potassium channel subunits that are KCNA1, KCNA2, 
KCNB1, KCNC1, KCNQ2, KCNQ3, KCNQ5 and 
KCNT1. 3-9 KCNT1 (Slo2.2 or Slack), together with 
KCNT2 (Slo2.1 or Slick), belongs to the SLO2 family of 
Na+-dependent (K+) channel genes, encoding for pore-
forming αsubunits variably gated by changes in voltage 
and/or concentrations of intracellular ions or second 
messengers (Bhattacharjee et al., 2003). KCN2 has been 
considered as a candidate gene for epilepsy with simi-
lar symptoms as that of KCNT1 gene (Ambrosino et al., 
2018). Recent study on individual with West syndrome 
detected association of KCNT2 mutation. with the dis-
ease (Gururaj et al., 2017). Although nearly 74% of the 
KCNT2 gene homology and hetero- tetrameriation be-
tween the subunits in some brain and heart regions has 
been detected, no previous report indicates the connec-
tion between the variants of KCNT2 (SLICK or Slo2.1) 
tohuman phenotype (Chen et al., 2009; Lim et al., 2014; 
Lim et al., 2016).

In the present study, we investigated the functional 
impact of two de novo variants of KCNT2 gene in two 
unrelated patients with neurodevelopmental disorders.

PATIENTS INFORMATION

The study has been approved by the ethics committee 
of Biruni University. Written consent for genetic testing 
and related data has been obtained from each case’s bio-
logical parents. However, both family refused to carry 
out further detailed analysis on family members.

Both individuals were born to noncosanguineous 
healthy parents of Turkish origin. Individual #1 is a 
6-year-old boy who was born at term with 2.90 g and 
normal head circumference. Individual #2 a 5-year-old 
boy who was born at term with 2.86 g. Individual #1 
was admitted at Biruni University hospital with inability 
in speaking and walking which indicated delay in mo-
tor development. Magnetic Imaging Resonance (MRI) of 
the patient, at the age of 2, showed diffusely thin corpus 
callosum. Also, both of the lateral ventricles are dilated 
and partial colpocephaly was detected and patient was 
diagnosed with refractory epilepsy. Social interaction and 
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eye contact was reported to be normal. EEG was per-
formed at the age of 5 and it showed sharp and slow 
waves in the right frontotemporal region. Further analysis 
with EMG at the same age detected low amplitude dis-
tal motor responses from the lower extremity. The in-
dividual #2 showed normal EEG at the age of 1. Both 
individuals showed reduced muscle strength (hypotonia) 
and delayed neural development followed by intracta-
ble seizures. Further genetic analysis was recommended 
to find out the causatives for the presented phenotypic 
characteristics.

RESULTS

Genetic analysis

To find genetic alteration associated with the patient 
phenotypes, we performed Whole Exome Sequencing to 
analyse the coding exons and exon-intron boundaries of 
18.000 protein coding genes. Genomic DNA prepara-
tion, exome capture, and Illumina sequencing (NextSeq 
platform) were performed as recommended by manu-
facturer. In brief, Genomic DNA was extracted from 
whole peripheral blood sample using iPrep PureLink 
gDNA blood Kit (Invitrogen). Genome Library was pre-
pared with Agilent SureSelect Target Enrichment system 
(Agilent Technologies, Inc., Santa Clara, CA, USA) and 
enrichment of coding exons and flanking intronic re-
gions was performed using Agilent SureSelect Human 
All Exon V6 reagent following the manufacturer’s pro-
tocol as previously described (Bonnefond et al., 2012) and 

sequencing was performed using an Illumina NextSeq500 
system. Sequence reads were mapped to the human ge-
nome (GRC38/hg19) using the Burrows-Wheeler Align-
er (version 0.6.1; algorithm “BWA–SW”; default param-
eters) for targeted sequencing data. Variants with fre-
quency more than 1% in the population were removed. 
Variants were annotated using Alamut visual, and allele 
frequency with databases, dbSNP, ExAC (exome ag-
gregation consortium) variants and the 1000 Genomes 
Project. Disease causality was assessed using ClinVar and 
ESP (exome sequencing project) variants ExAC (exome 
aggregation consortium) variants, ESP (exome sequenc-
ing project) variants.

The expression of sodium activated potassium chan-
nel gene, KCNT2 (Slick), is found in heart and nervous 
system. Slick is activated by intracellular sodium and 
possesses nucleotide- binding site that maintains ATP-
dependent inhibition of channel function and this char-
acteristic affect livability of brain/heart cells which is due 
to vigorous activities of neurons (Salkoff et al., 2006). The 
whole exome sequencing revealed heterozygous mutation 
c.545A>T (p.Asn182Ile) in transcript NM_198503.2 and 
c.2638C>A (p.Leu880Met) in transcript NM_198503.4 in 
individual #1 and #2 respectively. Based on the family 
histories and phenotypic characteristics of the disorder in 
the patients, the above mutations were suggested to be 
de novo missense variant.

PROTEIN ANALYSIS

Damage intensity of the mutations was analysed us-
ing PolyPhen2 (http://genetics.bwh.harvard.edu/pph2/). 

Figure 1. Protein configuration of KCNT2 gene in wild type (A) and case 1 mutations (B). 
Figure 1B represents protein configuration change and its binding ligand caused by substitution of Asparagine by Isoleucine.
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N182I and L880M substitutions are shown to be prob-
ably damaging (score 0.984 and 0.989 respectively). Mu-
tation taster program (www.mutationtaster.org/) showed 
that both mutations cause change in protein function 
and are disease causing. Following the findings, 3D pro-
tein structure analysis by swissmodel expasy (https://
swissmodel.expasy.org/interactive) showed conforma-
tional changes in protein and its binding sites (Fig. 1 
and Fig. 2). The position was shown in S4-S5 for both 
mutations which could possibly affect regulators of con-
ductance of potassium (RCK) domains which were pre-
viously introduced (Bhattacharjee et al., 2003; Salkoff et 
al., 2006).

DISCUSSION

Early Infantile Epileptic Encephalopathy (EIEE) is 
characterized as neurological disorder and patients show 
seizures and tonic spasms at the first few months of life. 
EIEE type 57 has been previously reported in patients 
with KCNT2 gene mutations (Gururaj et al., 2017). In 
this paper, we reported two patients of similar pheno-
types with different mutation locations on KCNT2 gene. 
Although the variants’ position was not same (N182I 
and L880M), computational analysis of data from Whole 
Exome sequencing presented possibly similar damaging 
effects on protein function and its binding sites. As both 
patients presented epileptic seizure and developmental 
delay in nervous system, we deduced the phenotypic ab-
normality to have been caused by ATP-dependent po-
tassium channels’ dysfunction. Although the clinical data 

due to lack of patients’ family cooperation for further 
studies are not sufficient to present strong case, previous 
findings on other patients showed connection between 
KCNT2 gene impairment and EIEE57. Therefore, fur-
ther investigation of the novel mutations in relation with 
the development of EIEE57 and patients’ clinical out-
come is strongly recommended.
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