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Maintenance of the cellular homeostasis is firmly linked 
with protein synthesis. Therefore, it is tightly controlled 
at multiple levels. An advancement in quantitative tech-
niques, mainly over the last decade, shed new light on 
the regulation of protein production, which pointed the 
ribosome as a new player. Ribosomes are macromolecu-
lar machines that synthesize polypeptide chains using 
mRNA as a template. The enormous complexity of ribo-
somes provides many possibilities of changes in their 
composition and consecutively in their target specific-
ity. However, it is not clear how this specialization is en-
forced by the cell and which stimuli provoke that diver-
sity. This review presents an overview of currently avail-
able knowledge about ribosome heterogeneity, focusing 
on changes in protein composition, and their role in the 
control of translation specificity. Importantly, besides the 
potential advantage of ribosome-mediated regulation of 
protein synthesis, its failure can play a crucial role in dis-
ease development.
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INTRODUCTION

Protein synthesis (translation) is a fundamental cel-
lular process essential to maintain the integrity of the 
proteome. Cells use complex molecular machiner-
ies called ribosomes that translate genetic information 
into polypeptide chains. Protein production is inevita-
bly linked to cell growth and proliferation. Imbalance 
in protein production can be detrimental for the cell, 
destroying cellular protein homeostasis and even lead-
ing to cell death (Hipp et al., 2014; Rothman, 2010; 
Santra et al., 2019). Consequently, protein synthesis is 
tightly regulated and immediately adjusts to environ-
mental changes. Modulation of translation is one of 
the essential cellular mechanisms responding to stress 
conditions, such as heat shock, nutrient deprivation, 
and an increase in reactive oxygen species (ROS) pro-
duction (Crawford & Pavitt, 2019; Harding et al., 2003; 
Hinnebusch, 2005; Liu & Qian, 2014; Topf et al., 2018; 
Wrobel et al., 2015). Generally, cells decrease protein 
synthesis in response to stress to save energy and pre-
vent overproduction of proteins that could overwhelm 
the capacity of cellular mechanisms protecting from an 

accumulation of damaged or unfolded proteins (Grant, 
2011; Harding et al., 2003; Mohanraj et al., 2020; Topf 
et al., 2019).

The ribosome is a large ribonucleoprotein machine 
responsible for synthesizing proteins in all cells using 
messenger RNA (mRNA) as a template. Eukaryotic ri-
bosomes are comprised of four ribosomal RNA (rRNA) 
species and 79 ribosomal proteins (RPs) distributed 
among two distinct subunits together constituting the 
monosome (80S, named according to the apparent sedi-
mentation velocity) (Thomson et al., 2013). The small ri-
bosomal subunit (40S) is built of 18S rRNA and 33 RPs, 
whereas the large ribosomal subunit (60S) consists of 
three rRNAs (5S, 5.8S, 25S) and 46 RPs.

The biogenesis of ribosomes takes place within the 
nucleolus, nucleoplasm, and cytoplasm. In the nucleo-
lus, the RNA polymerase I (Pol I) synthesises 5S, 5.8S, 
and 18S rRNA in a form of a single 47S transcript, 
known as pre-rRNA. The last rRNA, 5S, is transcribed 
in the nucleus by RNA polymerase III (Pol III). Con-
comitantly, RNA polymerase II transcribes ribosomal 
protein-coding genes and the arising mRNA is trans-
lated in the cytoplasm. Pre-ribosomal subunits, the 40S 
and 60S, are formed in the nucleolus from processed 
pre-rRNA, 5S rRNA and ribosomal proteins imported 
from the cytoplasm. Some of the ribosomal proteins 
assemble later, after independent export of immature 
ribosomal subunits to the cytoplasm, including eL24 
(L24), eL40 (L40), uL16 (L10) (Fernandez-Pevida et 
al., 2012; Kruiswijk et al., 1978; Saveanu et al., 2003; 
Zhou et al., 2019). The size of the mature eukaryotic 
ribosome is in the range of 3.5 megadaltons (MDa) to 
4.0 MDa in higher organisms (Yusupova & Yusupov, 
2017). Although intense studies have been conducted 
on ribosomes for decades, many questions are still 
pending, for example, do they consist of the same 
components in every cell or how ribosome heterogene-
ity changes the translational output? Here, we discuss 
the latest findings in the regulatory role of the ribo-
some in translation, specifically focusing on the role of 
ribosomal proteins and their modifications.

THE EMERGING CONCEPT OF SPECIALIZED RIBOSOMES

In 1958, George Palade, who discovered ribosomes, 
proposed a theory of heterogeneous ribosome par-
ticles based on electron microscopy observations of 
differences in their shape and size (Siekevitz & Pal-
ade, 1958). In parallel, Francis Crick worked on “one 
gene-one ribosome-one protein hypothesis”, according 
to which the ribosome carries information in its RNA 
for single protein synthesis (Crick, 1958). Neverthe-
less, this was disproved by Brenner and colleagues who 
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showed that Escherichia coli ribosomes synthesize phage 
proteins regardless of infection, demonstrating lack of 
ribosome specificity (Brenner et al., 1961). For decades, 
ribosomes were thought to be stable and invariable in 
composition macromolecular machines which trans-
late available messenger RNA into a protein, however, 
there is increasing evidence showing their regulatory 
role (reviewed in Dalla Venezia et al., 2019; Dinman, 
2016; Genuth & Barna, 2018; Xue & Barna, 2012). In 
2002, Mauro and Edelman proposed a ribosome filter 
hypothesis according to which mRNAs interact differ-
ently with ribosomal subunits through changes in their 
protein composition or rRNA, shedding a light on ri-
bosome control in gene expression (Mauro & Edelman, 
2002). Nowadays, the concept of specialized ribosomes 
in regulation of translation expands and comprises sev-
eral layers. Heterogeneity in the ribosome can be de-
termined by differential RP stoichiometry, RP modifi-
cations (e.g. phosphorylation, glycosylation), rRNA al-
terations (e.g. methylation, pseudouridylation) or bind-
ing of ribosome-associated proteins (RAPs) (Crawford 
& Pavitt, 2019; Shi & Barna, 2015; Simsek & Barna, 
2017; Sloan et al., 2017; Xue & Barna, 2012) (Table 1). 
This variability increases even more when considering 
interdependent factors in protein synthesis, mRNA and 
its diversity, such as internal entry sites (IRES), poly-
A sites in the 3’ untranslated region (UTR) or nucleo-
tide modifications (Kozak, 2005; Spriggs et al., 2008). 
Moreover, ribosome specialization can manifest at the 
level of a subcellular location, as well as dependence 
on the cell developmental state, cell type, or even tis-
sue specificity (Guimaraes & Zavolan, 2016; Gupta & 
Warner, 2014; Kondrashov et al., 2011; Marygold et al., 
2007; Simsek et al., 2017; Slavov et al., 2015; Wong et 
al., 2014). Tissue-specific expression was shown for a 
quarter of human ribosomal proteins (Guimaraes & Za-
volan, 2016). Interestingly, changes in ribosomes affect 
the translation of a subset of mRNAs rather than glob-
al protein synthesis. Perhaps this facilitates responses 
to urgent cellular protein demand or increases the ca-
pability to effectively react to environmental changes, 
e.g. stress conditions. Nonetheless, the etiology of the 
variability in ribosome composition and further their 
regulatory activity remains largely unclear.

The emerging field of ribosome heterogeneity is cur-
rently rapidly developing and is driven by implementa-
tion of specialized techniques to analyse protein synthe-
sis and ribosomes. However, the findings are scattered 
and their biological impact touches different fields of 
cell biology. Thus, we focus on a few recently outstand-
ing findings that highlight modulation of ribosomes at 
the level of ribosomal proteins themselves and the ri-
bosome – associated proteins (Table 1).

RIBOSOMAL PROTEIN PARALOGS AND DIFFERENTIAL 
PROTEIN STOICHIOMETRY IN THE RIBOSOME

The existence of ribosomal protein paralogs has been 
discovered in many organisms, such as: Arabidopsis thali-
ana (Barakat et al., 2001; Falcone Ferreyra et al., 2013), 
the yeasts Saccharomyces cerevisiae and Schizosaccharomyces 
pombe (Palumbo et al., 2017; Sun et al., 2013), Drosophila 
melanogaster (Mageeney & Ware, 2019; Marygold et al., 
2007) and in rodents and human cells (Guimaraes & 
Zavolan, 2016; Lopes et al., 2010; O’Leary et al., 2013; 
Sugihara et al., 2010). Among them, the budding yeast 
appears to be an excellent eukaryotic model for explor-
ing the ribosome heterogeneity. As a result of genome 
duplication, 59 from 79 RPs of S.cerevisiae are present in 
paralog pairs with high sequence similarity (Parenteau et 
al., 2015; Wapinski et al., 2010; Wolfe & Shields, 1997). 
Despite their similarity, in most cases deletion of one 
ribosomal paralog from the pair results in various phe-
notypes, suggesting their functional diversification (Lu et 
al., 2015; Ni & Snyder, 2001; Palumbo et al., 2017; Samir 
et al., 2018; Segev & Gerst, 2018). To gain further in-
sight, Ghulam et al. compared the expression of riboso-
mal protein paralog pairs (Ghulam et al., 2020). Focusing 
on RP paralogs with differences in one or more amino 
acids (37 out of 59 RP paralogs), specifically pairs pro-
ducing proteins that could be reproducibly distinguished 
by applied peptide-based mass-spectrometry (23 pairs). 
In 20 cases, under normal growth conditions, one of 
the RP paralogs was predominantly produced (major 
copy), regardless of their A or B nomenclature. A strik-
ing difference was observed for uS4 (S9), where the B 
paralog represents over 80% of total protein expression. 
Interestingly, exposure to stress, such as hygromycin or 
NaCl, reduced or reversed the ratio of the generated 
RP paralogs in most cases, favouring expression of the 
minor gene copy. Overall genome-wide ChIP-seq study 
showed no correlation between RNA polymerase II as-
sociation and the amount of produced ribosomal pro-
tein, indicating post-transcriptional regulation of riboso-
mal protein paralog production (Ghulam et al., 2020). A 
more in-depth study that used RNA-sequencing and pol-
yribosome association, revealed the importance of RNA 
abundance in the preferential translation of certain RP 
paralogs, mainly caused by differences in splicing and 
3’end formation (Ghulam et al., 2020). Another study 
also pointed out the relevance of introns within RPs in 
control of ribosome function (Parenteau et al., 2011). 
Altogether this indicates a multilayer regulation of the 
expression of ribosomal protein paralogs and their dis-
tinctive participation in actively translating ribosomes. In 
response to environmental changes, a subpopulation of 
the ribosomes that varies in RP paralog occupancy can 

Table 1. Overview of alterations in ribosomes that can contribute to the formation of ribosome specialization. 
Refer to the review text for details and references.

Ribosome alterations Examples

Ribosomal proteins

– Paralogs uL1b, uL2b, eL8, uL18, eL32, uS4, eS26

– Stoichiometry uL3, uL18, uL1, eL38, eL40, uS7, eS25, eS26

Post-translational modifications (PTMs) of ribosomal proteins acetylation, methylation, glycosylation, phosphorylation, ubiquitina-
tion, oxidation, UFMylation

PTMs of rRNA Methylation, Pseudouridylation

Ribosome-associated proteins PKM2, CDK1, BUD23
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provide a specific translation output, perhaps to quickly 
and specifically adapt to a current cellular need.

Functional diversification of RP paralogs can also af-
fect the production of certain groups of the protein. Se-
gev and Gerst showed the relevance of RP paralogs in 
the translation of mitochondrial proteins (Segev & Gerst, 
2018). The growth of different yeast mutants harbouring 
deletions of RP paralogs on fermentable (glucose) and 
non-fermentable (glycerol) carbon sources showed that 
uL1b (L1b), uL2b (L2b), and eS26b (S26) are necessary 
under respiratory conditions (Fig. 1). Puromycin-asso-
ciated nascent chain proteomics (PUNCH-P) technique 
revealed high downregulation of mitochondrial protein 
production in these RP mutants. This observation was 
specific for one RP paralog from the pair, even though 
they encode an identical protein, such as uL1a (L1a) and 
uL1b (L1b). Notwithstanding, how this specificity is con-
ferred remains unknown.

Concurrently, the eL8 (L8) paralog switch in the 80S 
ribosome was reported in response to shift in the carbon 
source from glucose to glycerol, in a yeast culture (Samir 
et al., 2018). eL8b (L8b) supports cell doubling under 
respiratory conditions in contrast to eL8a (L8a), con-
firming no interchangeable functions of RPs paralogs. 
Moreover, isobaric tags for relative and absolute quan-
titation (iTRAQ) labelling and mass spectrometry-based 
quantitative proteomics showed an imbalance in single-
copy ribosomal protein production upon changes in 
growth conditions, e.g. uL3 (L3) and uL18 (L5), which 
in turn refers to the new concept of sub-stoichiometric 
composition of the ribosome (Samir et al., 2018). Re-
cent advances in quantitative techniques also enabled the 

precise and accurate measurement of ribosome compo-
nent stoichiometry. In contrast to the uniform ribosome 
dogma, many studies prove the existence of several het-
erogeneous subpopulations of translation machinery in 
the cell at the same time (Shi et al., 2017; Slavov et al., 
2015). The appearance of such distinction is usually re-
lated to physiological conditions or tissue type. Substan-
tial progress on ribosome stoichiometry was done based 
on research on embryonic stem cells (Kondrashov et 
al., 2011; Rao et al., 2012; Shi et al., 2017; Slavov et al., 
2015). Shi and others (Shi et al., 2017) applied Selected 
Reaction Monitoring (SRM) to identify compositions of 
actively translating ribosomes in mouse embryonic stem 
cells (mESC). Absolute quantification of 15 RPs in the 
polysome fractions showed four core RPs to be signifi-
cantly depleted (uS7 (S5), eS25 (S25), uL1 (L10A), and 
eL38 (L38)). Also, uL1 (L10A) and eS25 (S25) associ-
ate with certain sub-pools of transcripts, e.g. encoding 
extracellular matrix proteins or involved in B12 vitamin 
signalling, respectively (Fig. 1). Hence, mESC ribosomes 
lacking one or more of RPs can still actively engage in 
the protein synthesis.

Other studies focus on sub-stoichiometry in ribosome 
composition as an effect of dynamic conditions, like cel-
lular stress. In yeast, high pH or high salt concentrations 
lead to the production of eS26 (S26)-depleted ribosomes 
(Ferretti et al., 2017). Indeed, translatome examination 
revealed that eS26 (S26)-deficient ribosomes preferen-
tially translate mRNAs implicated in the stress response. 
Conversely, eS26 (S26)-containing ribosomes occupy 
transcripts related to the translation process recognizing 
the Kozak sequence elements. Thus, this work illustrates 

Figure 1. Ribosome heterogeneity regulates translational output. 
The variability in translation machinery composition can be manifested at many levels, including differential ribosomal protein stoichi-
ometry, modification of ribosomal proteins or binding of ribosome associated proteins. The subpools of heterogeneous ribosomes arise 
in response to cellular protein demand and translate distinct mRNAs. The presence of certain ribosomal proteins in the ribosome results 
in favoured synthesis of proteins involved in vitamin B12 signalling (eS25 (S25)), extracellular matrix organization (uL16 (L10)) or mito-
chondrial function (uL1b (L1b), uL2b (L2b), eS26b (S26b)). The large ribosomal subunit protein, eL40 (L40), is required for the transla-
tion initiation of vesicular stomatitis virus mRNAs. Also, binding of non-ribosomal proteins increases ribosome specialization and results 
in production of proteins which are necessary for mitochondrial (via BUD23) or endoplasmic reticulum (via PKM2) functions. Moreover, 
post-translational modification of the ribosomal protein, uL24 (L24) by UFMylation protects from endoplasmic reticulum stress. These 
examples demonstrate the importance of ribosome heterogeneity for preserving cellular homeostasis.
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the enhancement of well-known transcriptional stress re-
sponse at the level of translation which is mediated by 
the ribosome heterogeneity.

Finally, some RPs exhibit more specialized functions. 
By studying vesicular stomatitis virus (VSV) protein 
synthesis upon host shutoff, Lee and others (Lee et al., 
2013) discovered that the 60S ribosomal subunit pro-
tein, eL40 (L40) is needed for translation initiation, in 
particular, 80S formation on viral mRNAs (Fig. 1) (Fer-
nandez-Pevida et al., 2012). Deep sequencing of poly-
some associated-mRNA in a yeast model showed eL40 
(L40)-depended transcript selectivity, mainly involved in 
the stress response. Surprisingly, the depletion of eL40 
(L40) did not influence the bulk of mRNA – polysome 
associations (93%), confirming the remarkable specializa-
tion of eL40 (L40)-bound ribosomes.

RIBOSOMAL PROTEIN MODIFICATIONS

Ribosome’s mode of action can be also changed by 
RPs’ modifications. Such protein modifications include 
acetylation, methylation, glycosylation, phosphorylation 
and ubiquitination (Filipovska & Rackham, 2013; Sim-
sek & Barna, 2017; Xue & Barna, 2012). Recently, thiol 
oxidation and UFMylation are getting increased attention 
(Shcherbik & Pestov, 2019; Simsek et al., 2017; Topf et 
al., 2018; Wang et al., 2020). One of important mecha-
nisms controlling protein function is reversible oxidation 
and reduction of its cysteine (Cys) residues. An advanced 
quantitative redox proteomics technique, oxidative iso-
tope-coded affinity tags (OxICAT), revealed several RPs 
from both ribosome subunits to be ROS sensitive in 
different organisms (Leichert et al., 2008; Menger et al., 
2015; Topf et al., 2018). The SILAC-iodoTMT method, 
which allows to simultaneously monitor the redox state 
and protein expression level, also confirms RPs to be 
one of the most significant groups of proteins affected 
by the hydrogen peroxide treatment (Vajrychova et al., 
2019). Topf et al. proposed a concept that RPs can serve 
as redox sensors upon oxidative stress conditions (Topf 
et al., 2018). Dysfunction of mitochondrial protein import 
results in increased ROS production and rapid attenua-
tion of global protein synthesis. On the other hand, inhi-
bition of protein production caused by exogenous addi-
tion of hydrogen peroxide can be reversed by removing 
the source of stress, suggesting quick translational repro-
gramming. OxICAT analysis upon mitochondrial stress 
and exogenous hydrogen peroxide treatment identified 
overlapping ROS-sensitive ribosomal proteins. Impor-
tantly, global translation upon deletions of these proteins 
was less affected under oxidative stress. Altogether, this 
renders RPs potential thiol-based redox switches, which 
might effectively respond to environmental changes. 
Such a molecular mechanism could be beneficial for the 
cell, allowing for immediate protein synthesis regulation, 
without energy-consuming de novo ribosome assembly. 
Nevertheless, it is still not clear how oxidation of certain 
RPs influences the work of translation machinery and 
whether the main outcome of this event is attenuation 
of the process or rather its reprogramming. Interestingly, 
other redoxome studies in yeast and also in human cells 
show that some of the RPs are oxidized under normal 
growth conditions and play a role in functional pathways 
(Go et al., 2011; Le Moan et al., 2006). This supports the 
importance of reversible changes in ribosomal protein 
redox state in preserving cellular homeostasis.

UFMylation is one of the latest identified ribosomal 
protein modifications. Ubiquitin-fold modifier 1 (UFM1) 

is an ubiquitin-like small protein identified in metazo-
ans, plants, and mammals, but not in yeast (Wei & Xu, 
2016). It conjugates to lysine residues on substrates via 
a specific cascade of enzymatic processes that involve 
ligases and proteases (Wei & Xu, 2016). The role of 
UFM1 is expanding, showing mostly its significance in 
the unfolded stress response (UPR) in the endoplasmic 
reticulum (ER) and haematopoiesis (Cai et al., 2016; Le-
maire et al., 2011; Tatsumi et al., 2011; Wang et al., 2020; 
Zhang & Xu, 2016). An intricate study of Walczak et al., 
involving UFMylome and MS analysis, revealed that the 
primary target of UFM1 posttranslational modification 
is the large ribosomal subunit protein, uL24 (L26), and 
particularly its C-terminal lysines which are localized next 
to the ribosome’s peptide exit tunnel (Walczak et al., 
2019). UFMylated uL24 (L26) was found to be enriched 
at the ER membrane-bound ribosomes and polysomes, 
which correlates with the fact that the enzyme complex-
es catalysing UFMylation and de-UFMylation bind to the 
ER cytoplasmic surface. Moreover, disruptions of uL24 
(L26) UFMylation result in ER stress (Fig. 1). Exploring 
the function of UFMylation of uL24 (L26) in ER-asso-
ciated ribosomes, Wang et al. uncovered its implication 
in the degradation of stalled nascent chains (Wang et al., 
2020). Ribosome UFMylation triggers degradation of 
ER translocation-arrested proteins directing them to the 
lysosome, in contrast to previously described ribosome-
associated quality control (RQC) mechanism, which tar-
gets nascent chains for proteasomal degradation (Brand-
man & Hegde, 2016). Thus, modifications of ribosomal 
proteins can occur at any level of protein production 
and can have a prominent impact not only on translation 
regulation but also on the entailed cellular processes.

THE ACTIVITY OF RIBOSOME-ASSOCIATED PROTEINS

Binding of non-canonical proteins to the ribosome 
can also contribute to the increase in the diversity of 
the translational output. A ribo-interactome study per-
formed in mammalian cells revealed hundreds of pro-
teins associating with ribosomes that belong to differ-
ent functional groups, including protein- and RNA-
modifying enzymes, RNA binding proteins, but also 
proteins involved in the energy metabolism, redox 
homeostasis and cell cycle (Simsek et al., 2017). Inter-
estingly, a subcellular pool of translating ribosomes 
interacting with the muscle pyruvate kinase 2 (PKM2) 
was identified. PKM2 converts phosphoenolpyruvate 
(PEP) and adenosine diphosphate (ADP) to pyruvate 
and adenosine triphosphate (ATP) in the last step of 
glycolysis. This metabolic enzyme appeared to act as 
a translation activator regardless of its catalytic activ-
ity. To find direct PKM2 and RNA interactions, three 
techniques were combined: ultraviolet (UV) crosslink-
ing, immunoprecipitation (IP), and high-throughput se-
quencing, together known as the iCLIP analysis. This 
comprehensive study uncovered that PKM2 interacts 
with 18S rRNA and 28S rRNA in the proximity to the 
aminoacyl site (A-site) on the ribosome, where charged 
t-RNA molecules bind during protein synthesis. Ad-
ditionally, PKM2 mainly targets mRNAs translated by 
ER-associated ribosomes, encoding components of 
the ER itself and cellular membrane proteins (Fig. 1). 
Potentially, it might couple cell metabolism and pro-
liferation. Notably, other iCLIP studies also revealed 
metabolic enzymes that can interact with RNA, giv-
ing a chance to expand the current hypothesis (Baltz et 
al., 2012; Castello et al., 2012; Liu et al., 2019). Overall, 
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this data shows that ribosome associated proteins could 
boost translational selectivity of spatially localized mR-
NAs.

On the other hand, a more direct interplay between 
cell proliferation and protein synthesis provides cyclin-
dependent kinase 1 (CDK1), lately shown as a transla-
tional activator (Haneke et al., 2020). CDK1 is a con-
served, central kinase regulating cell cycle, which was 
identified among other kinases and phosphatases in the 
siRNA screen upon the formation of stress granules in 
human cells (Haneke et al., 2020). Although it was al-
ready reported as a protein involved in protein synthesis 
control during mitosis (Shuda et al., 2015), for the first 
time its role goes beyond the cell cycle control. By syn-
chronizing or arresting certain phases of cell cycle pro-
gression, the authors were able to show a reduction in 
global protein synthesis upon pharmacological inhibition 
or knockdown of CDK1 in the HeLa cells, as well as in 
the primary mouse embryonic fibroblasts (MEFs) (Shuda 
et al., 2015). Many molecular mechanisms contribute to 
this effect which is downstream of CDK1, such as phos-
phorylation of eIF2α or S6K1 signalling (Haneke et al., 
2020). It is also important to mention that CDK1 co-
sediments with the polysome fraction, which was con-
firmed using a mass spectrometry approach (Simsek et 
al., 2017). The known substrate of CDK1 is the large 
ribosomal subunit protein, uL11 (L12), which undergoes 
phosphorylation upon its activation. Interestingly, uL11 
(L12) phosphorylation, in turn, enhances the mitotic 
protein synthesis program (Imami et al., 2018). Finally, 
ribosome footprinting (Ribo-Seq) revealed that CDK1 
boosts 5′TOP mRNA translation, including RPs. Thus, 
CDK1 serves as a hub connecting the control of protein 
synthesis and regulation of cell cycle progression.

Further, several studies implicate a role of ribosome 
heterogeneity in production of mitochondrial proteins 
(Crawford & Pavitt, 2019; Segev & Gerst, 2018). Recent-
ly, Baxter and others (Baxter et al., 2020) identified the 
ribosome associated protein, BUD23, belonging to this 
group. BUD23 methyltransferase plays a dual, independ-
ent role in the formation of the translation apparatus. It 
is involved in the processing of pre-18S rRNA and add-
ing of methyl mark on its key guanosine residue located 
within the E site, where deacylated tRNA exits the ribo-
some and peptidyl-tRNA site (P-site) of the 40S riboso-
mal subunit. Loss of BUD23 does not significantly affect 
the global protein production but causes an imbalance 
in translation of specific mRNA. Translational efficiency 
(TE) of certain transcripts was calculated as a propor-
tion between ‘heavy’ polysome fractions, representing 
more than three ribosomes loaded on one mRNA, and 
‘light’ (less than three). Analysis of combined TE and 
RNA-seq results showed that BUD23-ribosomes prefer-
entially bind to mRNA transcripts with modest 5’UTR 
GC content. Surprisingly, depletion of BUD23 impairs 
the synthesis of nuclear-encoded mitochondrial proteins, 
especially those comprising complex I, IV, and V of the 
electron transport chain (Fig. 1). In turn, this greatly di-
minishes generation of mitochondrial ATP. Ribosomes 
with associated BUD23 were shown to be necessary for 
maintaining mitochondrial function, both in vitro and in 
vivo. In genetically modified mice models, loss of BUD23 
has led to embryo-lethality, whereas BUD23 loss restrict-
ed to mitochondrial-dependent cells, cardiomyocytes, 
caused cardiomyopathy and pre-mature death of animals. 
These findings exemplify the high importance of extrin-
sic proteins modifying ribosomes to regulate protein syn-
thesis and its impact on organismal physiology.

RIBOSOME MODIFICATION-RELATED DISEASES

Ribosomopathies are inherited diseases originating 
from dysfunction of ribosomes caused by mutations in 
ribosomal genes or rRNA, which give a wide spectrum 
of clinical phenotypes. However, this definition broadens 
as a consequence of heterologous ribosomes discoveries. 
In 1999, the Diamond-Blackfan Anemia (DBA), a bone 
marrow failure syndrome, was identified as the first dis-
ease caused by ribosomal protein mutation, in particu-
lar eS19 (S19), thereby supporting the concept of ribo-
some heterogeneity (Draptchinskaia et al., 1999). The list 
of DBA related RPs mutations was extended and now 
involves RPs from both ribosomal subunits, e.g. eS17 
(S17), uL18 (L5), and additionally, changes in rRNA 
were reported (Farrar et al., 2011; Gazda et al., 2008; 
Lezzerini et al., 2020; Quarello et al., 2016). Ribosomopa-
thies in most cases manifest themselves as hematopoietic 
deficiencies, and perhaps this is connected to the high 
diversity in RPs’ expression observed in the primary 
hematopoietic cells. An intriguing phenomenon in ribo-
somopathies is the transition from hypo- to hyper-pro-
liferation phenotypes, introduced by William Dameshek 
in 1967 (Dameshek, 1967). Patients who suffer from 
diseases characterized by a diminished proliferation po-
tential, such as anaemia, with time are at a higher risk 
of developing hyper-proliferative diseases, such as cancer 
(Dameshek, 1967; De Keersmaecker, Sulima, Dinman, 
2015).

Protein synthesis also plays a crucial role in cancer 
progression. Cancer cells are characterized by a high 
proliferative potential and therefore increased mRNA 
translation demand. Mutations of RPs are linked to sev-
eral human cancer types, including e.g. breast cancer and 
T-cell acute lymphoblastic leukaemia (De Keersmaecker 
et al., 2015; Ferreira et al., 2014; Kampen et al., 2019; 
Rao et al., 2012). Nevertheless, the so-called oncogenic 
ribosomes are also characterized by changes in protein 
composition. One of the newly discovered cancer-related 
proteins involved in translational reprogramming is the 
FK506-binding protein 10 (FKBP10) (Ramadori et al., 
2020). It is specifically expressed in lung cancer cells and 
its presence is negatively correlated with the patients’ 
survival. FKBP10 is an ER chaperone with peptidyl-
prolyl-cis-trans-isomerase (PPIase) activity (Chen et al., 
2017). Depletion of FKBP10 in A549 cells reduces glob-
al protein synthesis by half. Polysome profiling, followed 
by western blot analysis, detected FKBP10 in the mono-
some (the 80S) and in a light fraction of polysomes. Fur-
ther, knockdown of FKBP10 in A549 cells and in vivo 
in lung tumours in mice models showed accumulation 
of FKBP10 in the monosome fraction together with a 
decrease in the polysomes, suggesting its implication in 
translation elongation. Importantly, upon these condi-
tions ribosome occupancy specifically increases at the 
proline codons. These results indicate a mechanism rely-
ing on the ribosome binding protein, FKBP10, adapted 
by cancer cells to support their growth by an increase in 
the protein synthesis. Hence, this could be a promising 
target for new anticancer therapy (Liang et al., 2019).

Yet, emerging issues are neurodevelopmental syn-
dromes caused by mutations in the ribosomal machin-
ery’s components or association of trans-acting proteins, 
e.g. intellectual retardation and schizophrenia (Zhou et 
al., 2018). Several studies report mutations in the uL16 
(L10) gene which gives different phenotypes depend-
ing on localization of the mutation (Brooks et al., 2014). 
Mutation at the N-terminus of the uL16 (L10) protein 
results in inter alia microcephaly, whereas at C-terminus 
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correlates with autism (Brooks et al., 2014). Knockdown 
of uL16 (L10) in zebrafish gives a microcephaly-like 
phenotype and results in a decrease in general protein 
synthesis in the brain, which could not be rescued by 
mutated uL16 (L10) identified in patients (Brooks et al., 
2014). This proves the role of uL16 (L10) in symptoms 
developed by affected individuals, but the exact mecha-
nism remains unknown. Similarly, protein synthesis dys-
regulation was observed in patients with developmental 
delay carrying a mutation in a small ribosomal protein, 
uS12 (S23) (Paolini et al., 2017). Corresponding muta-
tions in yeast show impairment in accuracy of mRNA 
translation, while global protein synthesis remains un-
changed, most likely meaning that mutated uS12 (S23) 
is an integral part of translational machinery (Paolini et 
al., 2017). Noteworthy, fibroblasts from affected patients 
display high sensitivity to oxidative stress (Paolini et al., 
2017). In conclusion, changes in ribosomes are the cause 
of many distinct pathological phenotypes implicated in a 
wide spectrum of diseases, thus making them an attrac-
tive treatment targets, as well as potential disease prog-
nosis markers.

CONCLUSIONS AND FURTHER PERSPECTIVES

Protein synthesis is a crucial biological process in 
which deregulation has a tremendous impact on the cel-
lular or even organismal fitness. The discovery of ribo-
some heterogeneity is a milestone in understanding of 
gene expression. Advancement in molecular and analyti-
cal techniques, such as mass spectrometry, paves the way 
towards deciphering ribosome functions in the control 
of protein production (Genuth & Barna, 2018; Samir et 
al., 2018; Simsek et al., 2017; Topf et al., 2018). Multi-
ple high-throughput analyses allow for identification of 
a vast number of alterations in the translation machin-
ery, such as diversity in protein composition, changes 
in rRNA structure, or association of extrinsic proteins. 
The ribosome is an intricate ribonucleoprotein complex 
and for this reason it can also be a source of countless 
modifications, which in turn renders its study challeng-
ing. Generation of specialized ribosome sub-populations 
is usually linked to development, the status of the cell, 
or environmental conditions, such as stress. Pieces of 
evidence also suggest ribosome differentiation according 
to cell type or tissue specificity (Guimaraes & Zavolan, 
2016; Kondrashov et al., 2011; Wong et al., 2014). A 
seemingly subtle change, a single variation in the trans-
lation machinery can modulate translational output or 
even leads to a phenotypic effect in the whole organism. 
Likewise, such diversity also increases the risk of dys-
functional ribosomes’ formation or production of redun-
dant proteins, which can disturb cell homeostasis. In the 
context of diseases, the finding of specialized ribosomes 
results in a more detailed understanding of certain mo-
lecular mechanisms and in consequence the pathophysi-
ology of human diseases (Tahmasebi et al., 2018). Impor-
tantly, this opens new perspectives for targeted therapies. 
As already mentioned, a single modification in the trans-
lation machinery can cause a wide range of symptoms, 
proving its enormous impact on protein synthesis and 
further organismal health and vitality. Altogether, occur-
rence of ribosome heterogeneity opens many questions. 
Among them are the existence of signals for the genera-
tion of new ribosome subpopulations, what determines 
their localization, or if their appearance changes with ag-
ing? Currently, available knowledge regarding ribosome 
heterogeneity and its regulatory role in gene expression 

superficially touches different fields and is lacking con-
sistency. There is a need for more systematic studies and 
identification of functional consequences to further un-
derstand its implication in physiology and pathophysiol-
ogy.
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