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Melanin occurrence in Plenodomus biglobosus was in-
vestigated using the electron paramagnetic (spin) reso-
nance (EPR, ESR) spectroscopy. The fungus was isolated 
from living and dead leaves of European ash (Fraxinus 
excelsior L.). Dark pigmentation of P. biglobosus my-
celium in vitro, especially on the reverse side, was ob-
served. The black coloration intensified with the age 
of the culture and inspired us to check if the analyzed 
fungus species synthesizes melanin. Melanin contains 
unpaired electrons, thus, EPR spectroscopy was applied 
as a specific technique to verify its presence in P. biglo-
bosus. The EPR spectrum of the mycelium showed a 
very strong melanin signal, revealing pheomelanin-like 
features. Thus, the black pigment of P. biglobosus was 
clearly identified as melanin. However, no melanin was 
detected in the apparently dark culture medium even 
when zinc (II) acetate was added to increase the sensi-
tivity of detection. Pheomelanin has many unusual bio-
logical functions but it is not commonly found in fungi. 
Detection of this type of melanin in P. biglobosus, which 
can be both endophytic or pathogenic, suggests a closer 
examination of the potential role of this melanin in the 
host-parasite interaction.
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INTRODUCTION

Fungi constitute a separate Kingdom in Eukaryotes, 
and are a very diverse group of organisms occurring 
all over the world. Despite their ubiquity, fungi are 
still relatively poorly known regarding the production 
of biologically-active substances. On the other hand, 
they are potentially considered as the richest source 
of such substances (Pusztahelyi et al., 2015). In this 

paper we examine if the black color of a fungus iso-
lated from leaves of European ash (Fraxinus excelsior 
L.) is determined by melanins. Ash leaf petioles play 
an important role in the development of the ascomy-
cete fungus Hymenoscyphus fraxineus (T. Kowalski) Baral 
et al. (anam. Chalara fraxinea T. Kowalski), which is a 
dangerous pathogen of ash, presumably introduced 
from East Asia (Kowalski, 2006; Baral et al., 2014; 
Gross et al., 2014). H. fraxineus causes an epidemic 
disease commonly known as ash dieback, spreading 
across Europe for about 20 years. It is a serious threat 
for European ash (Gross et al., 2014). After leaf infec-
tion, mycelium of H. fraxineus overgrows through the 
petioles to the ash branches and initiates dieback of 
the tree crown. In the following year, H. fraxineus can 
produce fruitbodies on infected leaves which fell onto 
the ground. These fruitbodies eject ascospores, which 
can cause new infections on other, so far symptom-
less ash trees.

In Poland, the fungal community living on both, 
the alive and dead petioles, has been studied for sev-
eral years. In this context, competitive ability of vari-
ous fungi towards the ash pathogen H. fraxineus is be-
ing investigated aiming at identification of potential an-
tagonists against the ash dieback pathogen (Kowalski, 
unpublished). Among the fungal community obtained 
in these studies, several strongly pigmented slow grow-
ing isolates were found. The dark pigmentation of the 
colonies was observed both in monocultures and, even 
more pronounced, in dual cultures with H. fraxineus 
(unpublished data). Thus, we hypothesized that this 
pigmentation is caused by a melanin, which is possibly 
biologically active.

Melanins are ubiquitous biopolymers found in each 
group of organisms: Prokaryotes (Drewnowska et al., 
2015; Bolognese et al., 2019), plants (Varga, 2016; Shoe-
va et al., 2020), animals and humans (Barek et al., 2018; 
Ali & Naaz, 2018; Słominski et al., 2005b), slime molds 
(Płonka & Rakoczy, 1997) and fungi (Dadachova & 
Casadevall, 2008; Nosanchuk et al., 2015; Suwannarach 
et al., 2019). They may be synthesized via enzymatic re-
action pathways or by spontaneous oxidative processes 
(Kaney & Knox, 1980; Martin Gonzalez et al., 1997; 
Płonka & Garbacka, 2006). Melanins may act as anti-
oxidants (ROS scavengers) (de Cassia R. Goncalves & 
Bonperio-Sponchiado, 2005; Wang et al., 2006), protec-
tive pigments against intense irradiation (Kollias et al., 
1991; El-Bialy et al, 2019; Zadlo 2019), chelators for 
metals (Thaira et al., 2018; Zadlo & Sarna, 2019) and 
toxins (Karlsson et al., 2009), ecologically and evolu-
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tionary important pigments supporting cryptic pigmen-
tation (Kelley et al., 2016; Polo-Cavia & Gomez-Mestre, 
2017) and mimicry (Hines et al., 2017), as a virulence 
factor in various fungal species (Polak, 1990; Płonka 
& Grabacka, 2006) or even as metabolites necessary 
for proper spore formation (Yu et al., 2015; Zhang et 
al., 2017). Physicochemical and biological properties of 
melanin, such as its color, are determined by the level 
of polymerization, and the structure of its mers (Fig. 1) 
that build a given melanin polymer (Micillo et al., 2016).

Melanins are divided into three main groups: eumela-
nins, pheomelanins and allomelanins. Eumelanins are 
dark (black, brown) colored pigments synthesized from 
tyrosine and/or phenylalanine during oxidation process-
es. An important stage of eumelanin synthesis is cycliza-
tion of DOPAquinone (derived from o-dihydroxypheny-
lalanine; DOPA) to leucodopachrome (Fig. 2A) and fur-
ther to 5,6-dihydroxyindole (DHI) and/or 5,6-dihy-drox-
yindole-2-carboxylic acid (DHICA) (Land et al., 2004).

Pheomelanins are yellow-red pigments synthesized 
similarly to eumelanins at the early stage, but DOPAqui-
none is cysteinylated (Fig. 2B) before cyclization. Thus, 
pheomelanins are pigments containing sulphur in their 
molecular structure (Land et al., 2004).

Allomelanins are the most diverse group among mel-
anins, and generally do not contain nitrogen (if they are 
not synthesized from tyrosine). Characteristic subgroups 
of allomelanins are DHN-(1,8-dihydroxynaphthalene)-
derived melanins and pyomelanins. Molecules specif-
ic for synthesis pathways of these subgroups are 1,8 
DHN (Fig. 2C) and the homogentisate anion (Fig. 2D), 
respectively (Płonka & Garbacka, 2006; Wang et al., 
2015).

Melanin biosynthesis in fungal cells takes place in 
subcellular organelles called melanosomes (Eisenman & 
Casadevall, 2012; Nosanchuk et al., 2015), analogous to 
the mammalian melanosomes where mammalian mel-

anogenesis occurs (Slominski et al., 2004; Eisenman & 
Casadevall, 2012; Ali & Naaz, 2018). The synthesized 
fungal melanins can be released to the extracellular space 
or they associate with cell walls, thus also affecting their 
structure and porosity (Fogarty & Tobin, 1996; Eisen-
man & Casadevall, 2012).

A characteristic property of melanins is paramagnet-
ism caused by the presence of an unpaired electron in 
the semiquinone (Fig. 1A) or semiquinonimine (Fig. 1B) 
group (Sealy et al., 1982b, Godechal & Gallez, 2011; 
Chikvaidze et al., 2014). Thus, melanins are unique pig-
ments, which are stable radicals. As a stable free radi-
cal systems, melanins can be analyzed with electron 
paramagnetic (spin) resonance (EPR, ESR) spectros-
copy, which is considered to be one of the most selec-
tive and sensitive analytical methods of spectroscopy for 
these pigments studies. EPR spectroscopy is a method 
for analysis of materials containing unpaired electron 
systems. The presence of stable semiquinone or semi-
quinonimine radicals makes melanin measurements inde-
pendent on the use of additional, exogenous spin labels. 
Furthermore, EPR spectroscopy excels over UV-Vis and 
other methods due to much greater specificity.

Spectroscopy not only allows for detection of melanin 
in a biological system but also for its qualitative analy-
sis – melanin systems made of benzothiazine are char-
acterized by the spectrum containing hyperfine structure, 
whereas melanins produced only of tyrosine (without 
participation of the sulfur-containing components) are 
characterized by a simple spectrum (Sealy et al., 1982b). 
Additional advantages of EPR spectroscopy are non-in-
vasiveness – the sample does not need to be processed 
before testing, and non-destructiveness – the sample is 
not damaged under measurement conditions (Chikvaidze 
et al., 2014). Therefore, EPR spectroscopy was applied 
as a sensitive and highly specific method to test the hy-
pothesis that the black color of the fungus from ash 
leaves is determined by melanins, and if so, to determine 
which kind of melanin is produced by the mycelium.

MATERIALS AND METHODS

Fungal culture. Plenodomus biglobosus was isolated both 
from living symptomless leaf’s petioles and from dead 
previous year petioles of the European ash collected 
from litter. They were not infected by H. fraxineus. The 
petioles were surface-sterilized by first soaking for 1 min 
in 96% ethanol, then for 5 min in a solution of sodium 
hypochlorite (approx. 4% available chlorine) and finally 
for 30 s in 96% ethanol. After drying in layers of blot-
ting paper, twelve pieces from each petiole were cut out 

Figure 1. Mers characteristics for: 
A – eumelanin (semiquinone radical), B – pheomelanin (semiqui-
nonimine radical). ‘•’ – free electron of radical molecule (A – modi-
fied after Godechal & Gallez, 2011; B – modified after Sealy et al., 
1982b; Płonka & Garbacka, 2006)

Figure 2. Characteristic stages of synthesis of: 
A − eumelanin (cyclization of dopaquinone to leucodopachrome), B − pheomelanin (cysteinylation of dopaquinone to cysteinylDOPA di-
rectly or via glutathione (GSH)); characteristic molecules in syntheses of: C − DHN-melanins (1,8 DHN, 1,8- dihydroxynaphthalene), D − 
pyomelanins (homogentisate anion). Modified after Płonka & Garbacka, 2006
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and placed on the surface of malt extract agar (MEA; 
20 g l–1 malt extract (Difco; Sparks, MD, USA), 15 g l–1 
agar Difco supplemented with 100 mg l–1 streptomycin 
sulphate) in Petri dishes (diameter 9 cm). Among the 
many isolated fungal taxa, one, getting black during in 
vitro culture, was selected to further studies. It was iso-
lated on 29 August 2018 from a living symptomless 
petiole sampled from young European ash growing in 
the Myślenice Forest District (Malopolska, Poland). In 
dual cultures, both species, P. biglobosus and H. fraxineus, 
showed growth inhibition towards their counterpartner, 
and between them an inhibition zone was formed wider 
than 5 mm. The examined strain is deposited at the De-
partment of Forest Ecosystem Protection at  Agriculture 
University in Kraków (HMC 21532).

The selected strain was cultivated at 20°C in the dark 
on the malt extract medium (ME; 20 g/l (BIO-CORP)) 
as liquid, and on 1.5% agar as solid cultures. The change 
of mycelium color during growth was photodocumented 
after 2, 3, 6 weeks and 3 months (Fig. 3). DNA from 
the mycelium was isolated using DNA Mini Kit (Syngen 
Biotech, Wrocław, Poland) and amplified using the fol-
lowing primers: ITS1F (5’-CTT GGT CAT TTA GAG 
GAA GTA A-3’) (Gardes & Bruns, 1993) and LR6 (5’-
CGC CAG TTC TGC TTA CC-3’) (Vilgalys & Hester, 
1990).

Identification of the fungus was based on internal 
transcribed spacer (ITS) sequence which was verified 
using both, GenBank (https://www.ncbi.nlm.nih.gov/, 
accessed 24.04.2020, Altschul et al., 1990) and UNITE 
(https://unite.ut.ee/, accessed 24.04.2020, Nilsson et al., 
2019) databases.

EPR studies

Analysis of mycelium and synthetic melanins. The 
mycelium with agar from a solid culture was resected 
with a lancet and packed densely into an EPR glass tube 
(inner diameter 4 mm, length 2.5 cm) whereupon the 
glass tube was frozen in liquid nitrogen to form an ici-
cle. The sample was subsequently transferred to a quartz 
finger Dewar filled with liquid nitrogen.

The EPR measurements were performed with a Var-
ian E-3 X-band spectrometer (Sunnyvale, LA, USA) at 
77K (–196°C). Initially, technical parameters were tested 
to obtain the spectrum of the best quality, with the low-
est values of the gain and power, which may cause signal 
distortion. The final, established parameters for fungal 
mycelium analysis were as follows: modulation amplitude 
1.0 Gs, receiver gain 50 000, microwave power 1 mW, 
time of one scan 200 s, time constant 0.1 s, number of 
scans 3 and were then averaged.

Spectra were analyzed by calculating the ‘a’ and ‘b’ pa-
rameters, and the hyperfine splitting constant Ahfs (which 
is the distance between the centers of the bands a and 
b). The ‘a’ parameter is the intensity of the band which 
is a linear combination (superposition) of bands of eu- 
and pheomelanin; the ‘b’ parameter is characteristic for 
pheomelanin (Sealy et al., 1982a, b). To analyze the rela-
tive proportions between eu- and pheomelanin, the a/b 

Figure 3. Images of fungal colonies documented after: 
A – 2 weeks, B – 3 weeks, C – 6 weeks, D – 3 months

Figure 4. Representative EPR spectra of analyzed materials: 
A – synthesized eumelanin, B – studied fungus mycelium, C – syn-
thesized melanin copolymer, D – supernatant without addition of 
zinc (II) acetate, E – supernatant with addition of zinc (II) acetate. 
‘a’ – intensity of superpositioned bands characteristic for eu- and 
pheomelanin, ‘b’− intensity of the low-field pheomelanin band, ‘*’ 
– high- and low-field bands characteristic for pheomelanin (the 
high-field line is poorly resolved), Ahfs – hyperfine splitting con-
stant. ΔH – linewidth of the EPR signal
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ratio was calculated. Additionally, the ΔH parameter was 
calculated as a linewidth of the EPR signal connected to 
the ‘a’ band. The final values of Ahfs, a/b ratio and ΔH 
were the means of values calculated from 5 spectra (val-
ues of standard deviation and standard error were calcu-
lated and the second one was presented as the measure-
ment of uncertainty in the text). Spectra were obtained 
from separate colonies, cultured for 21 days under the 
same conditions, and of comparable diameter (5 cm).

The calculated parameters were compared to the val-
ues obtained from a synthetic eumelanin/pheomelanin 
copolymer (predicted composition: 90% of pheomela-
nin, 10% of eumelanin) (Fig. 4C). The spectrum of syn-
thetic eumelanin (i.e. DOPA melanin) was also shown 
(Fig. 4A). Synthetic melanins were prepared based on 
the protocols by d’Ischia et al. (2013).

Analysis of pigment from the liquid medium. 
30 days old mycelium from liquid culture was separated 
from the medium by centrifugation (1 h, 9600 rpm) and 
the supernatant was transferred into a Falcon tube. A 
portion of the supernatant was divided into two parts, 
and two specimens were prepared: 1 ml of supernatant 
without any additions and 1 ml of supernatant with an 
addition of 1 ml of 100 mM Zn(CH3COO)2×2H2O so-
lution (to increase melanin bands resolution: Sarna & 
Lukiewicz, 1972; Felix et al., 1978); glass tubes, such as 
the one described earlier were used to prepare the sam-
ples. Frozen samples were then measured as presented 
earlier, except of the receiver gain – 620 000.

RESULTS AND DISCUSSION

Fungus identification

Identification by ITS sequencing of the selected iso-
late (GenBank accession no. MT651609) resulted in Ple-
nodomus biglobosus (Leptosphaeria biglobosa) (Shoemaker & 
Brun, 2001; de Gruyter et al., 2013) with 100% matches 
with sequences in the employed databases. However, 
the current species concept of L. biglobosa is broadly 
defined with six distinct subclades, thus its systematic 
allocation and characterization may be re-described in 
the future (de Gruyter et al., 2013). In this paper, P. 
biglobosus was for the first time identified as an endo-
phyte and saprotroph of the European ash. Ibrahim 
et al. (2017) previously characterized this species as a 
Fraxinus ornus endophyte. On the other hand, P. biglo-
bosus was also described as one of etiological factors of 
phoma stem canker of oilseed rape (Brassica napus L. 
var. napus) (Stonard et al., 2010). Oilseed rape is an im-
portant oleaginous plant, and the mentioned disease is 
one of the major causes of loss of winter oilseed rape 
crops in Europe, Australia and North America (Fitt et 
al., 2006). It is worth noting that Polish strains of P. 
biglobosus are considered to be more pathogenic than 
strains from France, Canada or Germany, due to their 
production of polanrazines and phomapyrones (Stonard 
et al., 2010).

The cultures of P. biglobosus were blackening with 
time (Fig. 3), suggesting that they were generating and 
accumulating a dark pigment, most probably melanin. 
It is known that on oilseed rape, P. biglobosus often co-
occurs with Leptosphaeria maculans (Stonard et al., 2010), 
which does not produce blackish pigments (Lob et al., 
2013). However, there are articles in which L. maculans 
was described as a melanized fungus, therefore P. biglobo-
sus could have been incorrectly described as L. maculans 
(Shoemaker & Brun, 2001). The authors also used term 

‘melanin’, but there were no citations or evidences that 
the pigment was melanin indeed, and not another pig-
ment (Jędryczka et al., 1998; Jedryczka et al., 2002). Other 
authors determined P. biglobosus as Leptosphaeria maculans 
or Leptosphaeria maculans/Phoma lingam, and described sul-
phur-containing chemical species which were considered 
only as shunt metabolites connected to DHN-melanins 
synthesis pathways (Pedras & Yu, 2009a, b).

The authors claimed in these papers that they de-
scribed for the first time sulphur-containing variations of 
DHN-related allomelanins. However, they did not sup-
port their discoveries with EPR measurements and little 
is known on the pheomelanin-like DHN melanins. Nev-
ertheless, the work of these authors opened up a new 
field of melanin research.

In the work presented here we finally confirm by us-
ing EPR that the pigment produced by P. biglobosus is 
melanin, and in particular – pheomelanin.

EPR analysis of P. biglobosus

EPR analysis of the fungal mycelium revealed a strong 
EPR signal around g = 2.004, typical of melanin (Com-
moner et al., 1954). Analysis of the spectrum (Fig. 4B) 
revealed a hyperfine splitting of the signal with Ahfs 
ca 7.5 (Table 1) suggesting that P. biglobosus produced 
pheomelanin (Sealy et al., 1982a, b), which is a rare type 
of melanins found in fungi. The splitting is a result of 
magnetic interaction of the unpaired electron with the 
magnetic nucleus of nearby 14N. The third, high-field 
component of the splitting is usually poorly resolved 
(Sealy et al., 1982a; Sealy et al., 1982b). Some authors 
mentioned a possibility of pheomelanin being produced 
by fungi (Eisenman & Casadevall, 2012; Nosanchuk et 
al., 2015), but few papers showing EPR analysis of fungi 
containing pheomelanin pigment can be found. Well-de-
fined EPR spectra of fungal pheomelanin were published 
e.g. for Cladosporium cladosporioides (Buszman et al., 2006), 
Cladosporium sphaerospermum (Dadachova et al., 2007) and 
Cladosporium herbarum (Zdybel et al., 2009). Pheomelanin 
is also known to have a stronger prooxidant activity 
than other melanins (Tanaka et al., 2018). As P. biglobosus 
maintains this type of pigment, it must be suggested that 
its production is somehow evolutionarily advantageous 
for this species.

In the studied fungus the calculated a/b ratio was 
estimated to be 6.0±0.1 (Table 1). For a more detailed 
analysis of the fungal melanin spectrum, it was compared 
to a synthetic melanin spectrum (Fig. 4C) which was ob-
tained from analysis of a copolymer predicted to con-
tain 90% of pheomelanin and 10% of eumelanin. The 
calculated ratio of a/b parameters was 1.4, which stays 
in a good agreement with the predicted value for pure 
synthetic pheomelanin (1.2±0.1, Sealy et al., 1982a) and 
suggests that the spectrum of P. biglobosus also contains 
a copolymer of melanins with quite a substantial par-

Table 1. Mean values of EPR spectra parameters calculated for 
fungal mycelium (n = 5).
‘a/b’ – ratio of intensity of the band ‘a’ (superposition of eu- and 
pheomelanin bands) and ‘b’ (characteristic for pheomelanin), Ahfs 
– hyperfine splitting constant – distance between ‘a’ and ‘b’ bands, 
ΔH – linewidth of the EPR signal connected to ‘a’ band, S.D. – stand-
ard deviation, S.E. – standard error

Parameter Calculated mean value ± S.D. ± S.E.

a/b ratio 6.0 0.3 0.1

Ahfs/Gs 7.9 0.2 0.1

ΔH/Gs 6.6 0.3 0.1
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ticipation of pheomelanin. For comparison, for common 
animal pheomelanotic materials, the a/b value equals 
e.g. 3.5–4 for yellow Ay/a mice, up to approx. 9 for 
an agouti phenotype (Slominski et al., 2005b; Wolnicka-
Głubisz et al., 2013). Another typical EPR parameter – 
the linewidth (ΔH) 6.6±0.1 Gs (Table 1) was also com-
parable to pheomelanin, as revealing a wider signal than 
eumelanin (ca. 3.5 – 4 Gs, e.g. Slominski et al., 2005a; 
Wolnicka-Głubisz et al., 2013).

The Ahfs (Fig. 4B) calculated for fungal mycelium was 
7.9±0.1 Gs (Table 1), which was slightly higher than the 
parameter calculated for synthetic pheomelanin (Ahfs = 
7.1 Gs, Fig. 4C). According to the literature, the value 
for synthetic pheomelanin should vary in the range of 
7–7.4 Gs, but it is strongly dependent on the micro-
environment of the sample, especially pH (Sealy et al., 
1982b). This may be the reason of the discrepancy be-
tween our result and values found in the literature. This 
discrepancy remains within the frame of experimental 
errors but at the same time it suggests taking a closer 
look into the structure of the fungal pheomelanin in the 
future. In particular, the abovementioned suggestion on 
the potential structure of mers of sulphur-containing 
DHN-derived melanin (Pedras & Yu, 2009a, b) should 
be seriously taken into consideration.

The deep-dark, almost black color of the culture 
(Fig. 3) may seem incongruent with the popular view 
that pheomelanins give ‘yellow-red’ coloration of bio-
logical materials, but this may be due to a purely opti-
cal phenomenon, as some samples of dried pheomelanin 
seem to be apparently black, and only after dissolving 
or spreading on a white background as a thin layer, they 
reveal a reddish tint (Wolnicka-Głubisz et al., 2012). Due 
to the high specificity of EPR parameters, our analysis 
revealed beyond any doubt that pheomelanin or a similar 
pigment with analogical structure of paramagnetic cent-
ers is produced by the mycelium of P. biglobosus.

EPR analysis of the supernatant from the liquid cul-
ture showed that melanin was not secreted outside the 
fungal cell. The dark color of liquid was probably caused 
by secretion of melanin precursors or might also result 
from secretion of other colored metabolites. It is pos-
sible that monomers with conjugated systems of double 
bonds were colored, but before polymerization they were 
not paramagnetic, thus, an EPR signal was not detected 
(Fig. 4D) even with zinc (II) acetate addition (Fig. 4E).

Role of the pigment – suggestions

Increasing intensity of the dark color of the myce-
lium indicates that the fungus is accumulating melanin 
pigments during growth and aging. Melanins, especially 
eumelanin, play a role as photoprotectants able to ab-
sorb and dissipate electromagnetic radiation (Kollias et 
al., 1991). Analyses conducted by Drewnowska and oth-
ers (Drewnowska et al., 2015) showed that production of 
eumelanin-like pigments among bacterial strains of Bacil-
lus weihenstephanensis differed, and the main differentiating 
factor was exposure to light. However, according to our 
observations, the pheomelanin-like pigment accumulation 
was present when P. biglobosus cultures were not exposed 
to light. This suggests that the role of pheomelanin in 
the fungus is different than the role of eumelanin in 
the mentioned bacteria. As pheomelanin can be pho-
totoxic (Ito et al., 2018), this observation seems logical, 
but it does not explain what is the reason for generat-
ing pheomelanin in the dark. It would be also interest-
ing to check if allo-, or eumelanin content is growing 
during exposure to light. Riley (Riley, 1992) suggested 

that initially melanin might have been a ‘dustbin’ for the 
excess of toxic orthoquinones, free radicals and metals 
(and maybe thiols, too), while Ito (Ito, 2003) emphasized 
a possibility that during biological melanogenesis initially 
pheomelanin is always produced, up to the exhaustion of 
the cellular thiol donors, and the eu/pheomelanin com-
position would depend on the availability of intracellular 
cysteine. To examine the role and production kinetics of 
melanin pigments in P. biglobosus further experiments are 
planned.

Pigmentation of P. biglobosus was already noticed by 
Lob and others (Lob et al., 2013), but no information 
on the pigment type was available. We provide the first 
data showing that not only eu-, or allomelanins but 
also pheomelanins occur in the P. biglobosus mycelium 
(Fig. 4). Besides photoprotection, another probable role 
of melanin in this species is its contribution to virulence. 
In numerous pathogens of plants, fungal melanin has 
been documented as a factor facilitating penetration of 
the host tissues and protecting the fungus against the 
host defense mechanisms (Płonka & Grabacka, 2006; 
Taborda et al., 2008).

Nevertheless, a possible involvement of melanin in 
the phoma stem canker etiology (see above) remains 
to be shown. It is also possible that melanin is just a 
side product of enzymes (such as polyketide synthases) 
whose primary role is different (e.g. detoxication) or still 
unknown (Yu et al., 2015). Such studies demand a thor-
ough and painstaking analysis at the level of molecular 
genetics and engineering (Takano et al., 1997, Yu et al., 
2015).

The melanin pigment is probably not being secreted 
into the plant tissues, but nevertheless comes into their 
close contact. On the other hand, no pathogenic effect 
of P. biglobosus was observed in F. ornus (Ibrahim et al., 
2017). Similarly, in our study, living leaves of F. excelsior 
from which the fungus was isolated, were free of visible 
symptoms of disease. Nevertheless, some apathogenic 
endophytes may become virulent under certain environ-
mental conditions or due to accumulation of mutations 
(Sieber, 2007). For this reason, further studies of the 
significance of P. biglobosus melanins for the host-parasite 
interaction involving Fraxinus spp., as well as oilseed 
rape, are necessary.

SUMMARY

We isolated and identified a fungal endophyte of the 
European ash as Plenodomus biglobosus (Leptosphaeria biglobo-
sa). This ascomycete, which is a pathogen of Brassicaceae 
and an endophyte of F. ornus, is shown to colonize the 
living and dead leaves of F. excelsior. Pronounced darken-
ing during colony development encouraged us to analyze 
the pigments of P. biglobosus. Our study provides the first 
EPR analysis of melanins produced by P. biglobosus. This 
fungus synthesizes significant amounts of pheomelanin, 
which is rarely found in fungi. However, the actual role 
of this metabolite in pathogenicity, stress resistance or 
interactions with other microorganisms still needs to be 
investigated.
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