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Gram-negative bacteria have developed several nanoma-
chine channels known as type II, III, IV and VI secretion 
systems that enable export of effector proteins/toxins 
from their cytosol across the outer membrane to target 
host cells. Protein secretion systems are critical to bac-
terial virulence and interactions with other organisms. 
Aeromonas utilize various secretion machines, e.g. two-
step T2SS, a Sec-dependent system, as well as one-step, 
Sec-independent T3SS and T6SS systems to transport ef-
fector proteins/toxins and virulence factors. Type III se-
cretion system (T3SS) is considered to be the dominant 
virulence system in Aeromonas. Activity of bacterial T3SS 
effector proteins most often leads to disorders in signal-
ling pathways and reorganization of the cell cytoskel-
eton. There are also scientific reports on a pathogenicity 
mechanism associated with the host cell apopotosis/py-
roptosis resulting from secretion of a cytotoxic entero-
toxin, i.e. the Act protein, by the T2SS secretion system 
and an effector protein Hcp by the T6SS system. Type 
IV secretion system (T4SS) is the system which translo-
cates protein substrates, protein-DNA complexes and 
DNA into eukaryotic or bacterial target cells. In this pa-
per, contribution of virulence determinants involved in 
the pathogenicity potential of Aeromonas is discussed. 
Considering that the variable expression of virulence fac-
tors has a decisive impact on the differences observed 
in the virulence of particular species of microorganisms, 
it is important to assess a correlation between bacterial 
pathogenicity and their virulence-associated genes.
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INTRODUCTION

Bacterial pathogens have evolved a multitude of strat-
egies against prokaryotic competitors and eukaryotic 
hosts to colonize, invade, and overcome the host im-
mune response (Sha et al., 2005; Fernandez-Bravo & 
Figueras, 2020). One of important prokaryotic cell func-
tions is protein secretion, which comprises transport of 
proteins from the cytoplasm to the extracellular medium 
and/or directly into other bacteria or eukaryotic cells. 
Protein secretion has an essential impact on these strat-
egies, used by many bacterial pathogens (Maffei et al., 
2017; Burdette et al., 2018; Sana et al., 2019). Since bacte-
ria form a variety of biotic associations, such as biofilms 
or pathogenic associations with larger host organisms 
(Donlan, 2002; Bogino et al., 2013), the role of protein 
secretion in modulating all of these interactions has been 
an important focus in the area of bacterial pathogenesis 
(Tseng et al., 2009; Nazir et al., 2017). 

Many proteins secreted by pathogens, such as toxins 
and effector proteins, contribute to increased adhesion 
of microorganisms to eukaryotic cells and to direct dis-
ruption of target cell functions playing a role in promot-
ing their virulence (Brodsky et al., 2010). These proteins 
can be transferred from the bacterial cytoplasm into 
host cells or host environment via a variety of mecha-
nisms, usually involving dedicated protein secretion sys-
tems, which are molecular machines translocating effec-
tor proteins across the host plasma membrane (Holland, 
2004; Abby & Rocha, 2017; McQuade & Stock, 2018; 
Meuskens et al., 2019). Bacterial pathogens use secre-
tion devices in a number of processes that are essential 
for their growth. These secretory nanomachines fulfil a 
prominent role in pathogenic or symbiotic interactions 
between “invaders” and their hosts or in formation 
of microbial communities (Galan & Waksman, 2018). 
Gram-negative bacteria have developed a wide variety 
of protein secretion apparatuses (known as type II, III, 
IV, and VI secretion systems) that facilitate export of 
infection-related proteins through the inner and outer 
membrane (Depluverez et al., 2016; Kubori, 2016; Abby 
& Rocha, 2017; Jana & Salomon, 2019).

Pathogenic bacteria are capable of causing diseases in 
susceptible hosts through the activity of multiple viru-
lence determinants that work individually or in combi-
nation. Effector proteins secreted via these systems are 
usually critical for bacterial virulence, e.g. loss of T3SS 
is sufficient to render the bacteria completely avirulent. 
Evaluation of distribution of the virulence-associated 
genes that encode various effector proteins and toxins 
and their correlation with bacterial virulence could pro-
vide valuable insights into bacterial pathogenicity (Wu 
et al., 2008; El-Bahar et al., 2019; Reyes-Rodriguez et al., 
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2019; Talagrand-Reboul et al., 2020). This review pre-
sents a concise summary of the secreted effectors/tox-
ins’ contribution to the virulence potential of Aeromonas. 
Since expression of virulence determinants has a decisive 
impact on the differences observed in the virulence of 
particular species of microorganisms, it is necessary to 
study the correlation between virulence genes and bacte-
rial pathogenicity. The role of bacterial secretion path-
ways (T2SS, T3SS, and T6SS) used to efficiently infect 
the host is discussed as well. 

SECRETED VIRULENCE FACTORS IN AEROMONAS

Aeromonas, which are representatives of Gram-nega-
tive bacteria, are found in aquatic environments world-
wide (Evangelista-Barreto et al., 2010; Soto-Davila et al., 
2019). These rods are mostly pathogenic to poikilother-
mic animals, including amphibians, fish, and reptiles. 
These opportunistic pathogens provoke a large vari-
ety of fish diseases, which particularly affect cultured 
salmonids and cyprinid species, causing ulcers, haem-
orrhages, septicemias and furunculosis (the latter con-
cerns diseases caused by Aeromonas salmonicida subsp. 
salmonicida in salmonids) (Dwivedi et al., 2008; Dworac-
zek et al., 2019). In humans, they can cause wound in-
fections, bacteraemia, gastroenteritis, and less frequently 
hepatobiliary infections, respiratory infections, urinary 
tract infections, and peritonitis. These diseases are usu-
ally more severe in immunocompromised than immu-
nocompetent individuals (Wahli et al., 2005; Tang et al., 

2014; Praveen et al., 2016; Abd-El-Malek, 2017; Duman 
et al., 2018).

The pathogenicity of Aeromonas was found to be mul-
tifactorial (Turska-Szewczuk et al., 2014; Rasmussen-Ivey 
et al., 2016; Reyes-Rodriguez et al., 2019) and attributed 
to a wide range of virulence-related factors (Albert et al., 
2000; Igbinosa et al., 2012; Tomas, 2012; Turska-Szew-
czuk et al., 2013), including structural components, i.e. 
polar (fla) and lateral flagella (laf), pili, capsules, the S-
layer, outer membrane proteins (OMP), and lipopolysac-
charide (LPS). Moreover, interaction between such path-
ogenic bacteria as Aeromonas and host cells is produced 
by their extracellular components and toxins, including 
haemolytic toxins, such as: 1) aerolysin with haemolytic 
and cytolytic properties (Aer), 2) cytotoxic enterotoxin 
(Act) with multiple biological activities, including abil-
ity to lyse red blood cells and destruct tissue culture 
cell lines (Chopra et al., 2000), 3) thermolabile (Alt), and 
thermostable (Ast) cytotonic enterotoxins (Alt causes 
elevation of cyclic AMP and prostaglandin levels in in-
testinal epithelial cells, Ast possess similar properties to 
Alt) (Albert et al., 2000), 4) serine protease (Ser) with 
extracellular proteolytic activity, 5) elastase (Ela) with 
caseinolytic and elastolytic activities (Rasmussen-Ivey et 
al., 2016), 6) glycerophospholipids, such as cholesterol 
acyltransferase (GCAT), which attacks membrane phos-
pholipids and leads to lysis of fish tissues (Tomas, 2012), 
and secretion systems (Ghenghesh et al., 2014; Rasmus-
sen-Ivey et al., 2016; Dlamini et al., 2018; Dworaczek et 
al., 2019; Fernandez-Bravo & Figueras, 2020). To under-
stand the pathogenicity of Aeromonas, the contribution 

Figure 1. Role of the virulence factors contributing to the virulence of Aeromonas
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of these factors should be defined. The role of determi-
nants involved in various stages of infection mechanisms 
is presented in Fig. 1. Many researchers have focused 
their attention on the biochemical activity of extracellu-
lar enzymes that may lead to damage to the host cell, 
facilitating the pathogen to invade the host and cause 
infection (Sun et al., 2016). Pathogenicity of Aeromonas 
results from a combination of various virulence deter-
minants; therefore, continuous monitoring of the occur-
rence of several virulence-related determinants in isolates 
is crucial to clarify the pathogenesis and epidemiology of  
(Chacon et al., 2003; Aguilera-Arreola et al., 2005). Ex-
pression of genes (alt, act, exoA, etc.) that encode differ-
ent toxins has been widely analysed in determining the 
pathogenicity potential of Aeromonas (Li et al., 2011; Yi et 
al., 2013). Wang et al. characterized the hemolysin genes 
in Aeromonas hydrophila and Aeromonas sobria isolates. They 
suggest that ahhl was the most prevalent hemolysin gene 
in all of the examined Aeromonas isolates (Wang et al., 
2003). Another paper reports on a new functional he-
molysin A gene (hlyA), which was found in a clinical 
isolate of A. hydrophila (Erova et al., 2007). As proved 
by molecular characterization, the hlyA gene showed no 
homology with other known hemolysin and aerolysin 
genes identified in Aeromonas isolates. A role of this new 
hemolysin gene in the virulence potential of Aeromonas 
has been suggested. 

Zhou and others (Zhou et al., 2019) investigated vir-
ulence-related genes in Aeromonas strains obtained from 
patients suffering from extra-intestinal and intestinal dis-
eases. The study of the distribution of virulence genes in 
the most common Aeromonas species A. veronii, A. caviae, 
A. dhakensis, and A. hydrophila, which have been iso-
lated from clinical specimens, revealed 40 combinations 
of 10 genes, among which alt/ela/lip/fla was the most 
dominant combination in the isolates. The alt/ela/li and 
act/ascF-G/fla combinations dominated as well. Although 
different numbers and types of virulence genes associ-
ated with Aeromonas pathogenicity were shown, there 
was no significant correlation between these genes and 
the invasion potential both in intestinal and extra-intes-
tinal infections (Zhou et al., 2019). Similarly, Wu et al. 
showed no correlation between the presence of the viru-
lence genes aerA, hlyA, alt, ast, and ascFG in Aeromonas 
isolates and the infection progress (Wu et al., 2007). In 
contrast, Zhou and others (Zhou et al., 2019) found that 
A. hydrophila species was more dominant in the case of 
extra-intestinal infections in comparison to intestinal in-
fections. Moreover, they revealed predominance of this 
species, especially in patients with malignant tumors. As 
suggested by the authors, Aeromonas sp. should be con-
sidered as an infectious agent in immunosuppressed pa-
tients – in particular, those with gastroenteritis, liver cir-
rhosis, post liver transplantation, and malignancy. Other 
authors have studied the genetic diversity of Aeromonas 
species isolated from lake water (Khor et al., 2015). Their 
results indicated involvement of multiple virulence genes 
(mainly: ser, aer, fla, ela act, and aexT), and among others 
alt and ast or their combination in A. hydrophila patho-
genicity. 

The latest research on correlation between the viru-
lence genes and pathogenicity of A. hydrophila isolates 
has shown the presence of the aer gene in the majority 
of screened isolates (El-Bahar et al., 2019). The act and 
hlyA genes were also identified, but in a much smaller 
number of the isolates. However, the ast gene was not 
found in any of the studied isolates. A direct relationship 
between the percentage of mortality and the genotype 
of the isolates was proposed based on the pathogenic-

ity test. The mortality rates were ~60% for isolates in 
which the virulence genes aer+ and act+ were identified 
and ~ 70% for isolates with other genes: aer+ and hlyA+. 
A slightly smaller percentage (approx. 50%) was deter-
mined in isolates characterized by the presence of only 
one of the following genes: act, aer, and hylA. For iso-
lates devoid of virulence genes, a mortality rate of ap-
prox. 20% was determined (El-Bahar et al., 2019). Stud-
ies of the relationship between the presence of virulence 
genes and pathogenicity of A. hydrophila conducted previ-
ously by Li and others (Li et al., 2011) showed a more 
frequent occurrence of the aerA+alt+ahp+ virulence geno-
type in bacterial isolates from the diseased than from 
the healthy fish (Li et al., 2011). A recent report of the 
comparative and evolutionary genomics of Aeromonas iso-
lates has brought a breakthrough in understanding bacte-
rial virulence (Talagrand-Reboul et al., 2020). The authors 
have perfomed phylogenomic analyses of several viru-
lence-associated genes: aer/act, ast, alt, exoA, aexT, aexU, 
and lafA. They suggested that the complexity of genes in 
terms of the varied gene organization, alternating evo-
lutionary modes, and their unequal distribution could 
help to elucidate the difficulties in assessment of Aero-
monas pathogenicity. Their observations were consistent 
with the existing assumption that Aer/Act is considered 
as the main enterotoxin involved in bacterial virulence. 
The novel accomplishment addressed the relationship 
between aer/act and ser genes that probably results from 
their functions. The aer+/ser- pattern suggested that pro-
teases (other than serine) may contribute to aerolysin 
activation or that Aer/Act is secreted but not matured 
in transmembrane protein complexes. The authors have 
demonstrated that the analysis of virulence-related genes 
should be conducted at the population level and studies 
performed on type strains cannot be generalized to the 
whole species (Talagrand-Reboul et al., 2020).

Aeromonas spp. have evolved various secretion path-
ways to translocate virulence-related proteins to the ex-
tracellular medium or directly into the host cells. Type 
II, III, and VI (T2SS, T3SS, and T6SS, respectively) are 
well-known secretion systems identified in Aeromonas 
(Zhong et al., 2019). The type II secretion system is re-
lated to the extracellular release of amylases, proteases, 
and aerolysin, as well as translocation of virulence de-
terminants across the cell outer membrane (Sandkvist, 
2001; Filloux, 2004; Li et al., 2011; Korotkov et al., 
2012; Chernyatina & Low, 2019; Korotkov & Sandkvist, 
2019). It is a double-membrane-spanning protein secre-
tion system consisting of 12–15 various general secretory 
pathway (Gsp) proteins in multiple copies (Korotkov et 
al., 2012). T3SS, which is considered as the dominant 
virulence system in Aeromonas (Origgi et al., 2017; Fer-
nandez-Bravo & Figueras, 2020), facilitates translocation 
of protein effectors across the plasma membrane into 
the host cell or secretion of pore-forming translocators 
that facilitate the transport of effector proteins (Chacon 
et al., 2004; Sha et al., 2007; Izore et al., 2011; Rangel et 
al., 2019). The type VI secretion system acts by inserting 
toxins into the host via valine-glycine repeat proteins and 
hemolysin-coregulated proteins (Wang et al., 2011; Yang 
et al., 2018; Fernandez-Bravo et al., 2019). After secre-
tion, these proteins exhibit antimicrobial pore-forming 
properties or remain as structural proteins (Bhowmick & 
Bhattacharjee, 2018). In recent years, research is particu-
larly focused on the role of expression of genes encod-
ing various toxins and secretion pathways in promoting 
Aeromonas virulence mechanisms (Dacanay et al., 2006; 
Vanden Bergh & Frey, 2014; Soto-Davila et al., 2019).  
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T2SS SECRETION SYSTEM AND EFFECTOR PROTEINS

Aeromonas infections are a result of complex molecu-
lar interactions between the pathogenic bacteria and the 
host cell, as indicated by proteins and toxins secreted 
into the extracellular environment. In Aeromonas, two 
types of hemolysins (α and β) differing in functional 
and physiological properties were determined (Epple et 
al., 2004). Both have the ability to form pores in the 
membrane of the host cell, thus generating osmotic lysis 
(Cabezas et al., 2017). Aerolysin, i.e. the prototype hemo-
lysin of the genus encoded by the aerA gene (Fernandez-
Bravo & Figueras, 2020), is secreted by the T2SS sys-
tem (Korotkov et al., 2012). Pore-forming toxins (PFTs) 
secreted by bacterial pathogens, such as Aeromonas, are 
major virulence factors used to modulate host cell ap-
optosis and cause auspicious infections (Bischofberger et 
al., 2012; Escajadillo & Nizet, 2018). They are able to 
induce different types of host cell death, as demonstrat-
ed in numerous papers (Gonzalez et al., 2011; Wiles & 
Mulvey, 2013; Ramirez-Carreto et al., 2019). PFTs act by 
causing damage to the host cell membrane, which acti-
vates various signalling pathways in the cells (Podobnik 
et al., 2017). Consequently, the permanent toxin-mediated 
membrane injury often leads to cell death (Gonzalez et 
al., 2011). The crucial parameter determining the type 
of death (apoptosis, necrosis, or pyroptosis) is the con-
centration of toxins and cell types. Aerolysin (as PFT) is 
secreted as an inactive precursor (pro-aerolysin), which 
is transformed into aerolysin only after binding to high-
affinity receptors on the target cell (Jia et al., 2016). With 
its ability to form heptameric pores, this bacterial α-toxin 
leads to induction of membrane damage and cell death 
(Iacovache et al., 2006; Wuethrich et al., 2014; Escajadillo 
& Nizet, 2018). Cell apoptosis is associated with activa-
tion of caspases. Imre et al. have demonstrated that cas-
pase-2 is necessary for PFT-mediated apoptosis and acts 
as an initiator caspase in Aeromonas aerolysin-mediated 
apoptosis (Imre et al., 2012). 

Aerolysin is a dimer, both in the crystal from and in 
solutions. Its main secondary structure is a β-sheet (more 
than 70% of the molecule) (Iacovache et al., 2016). Con-
version of proaerolysin to active aerolysin requires re-
moval of approximately 43 amino acids from the C-ter-
minus (Iacovache et al., 2011). Cleavage can be achieved 
by proteases secreted by the bacteria or found in the di-
gestive tract, e.g. trypsin, chymotrypsin, and furin (Abra-
mi et al., 1998). Three sites of cleavage have been identi-
fied: Lys-427 by trypsin, Arg-429 by chymotrypsin, and 
Arg-432 by furin. Aerolysin is a channel-forming toxin 
(Iacovache et al., 2006) that binds to a specific receptor 
on the surface of target cells and oligomerizes to form 
heptamers, which can insert into the plasma membrane 
(Makobe et al., 2012; Cirauqui et al., 2017). Recently, a 
tripartite α-pore forming toxin (from the alpha heli-
cal CytolysinA family) has been identified in Aeromonas 
hydrophila (AhlABC). Structural analysis proved that the 
AhlABC toxin requires all three components for cell ly-
sis. Wilson and others (Wilson et al., 2019) proposed a 
bi-fold hinge mechanism of transition from the soluble 
to the pore form in AhlB structures, and a tetrameric 
assembly used by soluble AhlC to hide their hydropho-
bic residues related to the membrane. The type II se-
cretion system, i.e. a well-known virulence mechanism in 
Aeromonas, is a trans-envelope apparatus used to deliver 
folded protein toxins to the surface and/or the extracel-
lular environment of the cell (Howard et al., 2019). Bac-
terial T2SS constitutes a large structure, including more 
than a dozen various proteins in multiple copies (How-

ard et al., 2019). As demonstrated by Li and Howard (Li 
& Howard, 2010) in the secretion pathway of Aeromonas 
hydrophila, for assembly of type 2 secretion apparatus (se-
cretin ExeD in the outer membrane), proteins ExeA and 
ExeB form an inner membrane complex which interacts 
with the peptidoglycan. While the peptidoglycan-ExeAB 
complex (PG-AB) is required for assembly of ExeD, 
the assembling mechanism remains unexplained. In their 
analysis of protein-protein interactions, Vanderlinde et 
al. suggested a putative mechanism by which the PG-
AB complex facilitates the assembly of ExeD via a direct 
interaction between ExeB and ExeD (Vanderlinde et al., 
2014). Other researchers demonstrated a secretion defect 
in ExeAB mutants as a result of an inability to assemble 
ExeD secretin in the outer membrane. The location and 
multimerization of overproduced ExeD in these mutants 
indicated a role of the ExeAB complex in the transport 
of ExeD to the outer membrane (Ast et al., 2002). 

T3SS SECRETION SYSTEM AND EFFECTOR PROTEINS

Many authors have shown that the toxicity of T3SS 
causes mutations in both, the structural genes and effec-
tor proteins, thereby demonstrating that structural genes 
are necessary for the toxicity and virulence of Aeromonas 
species, such as A. salmonicida and A. veronii (Reyes-
Rodriguez et al., 2019). Effector proteins secreted via the 
type III secretion system, such as the serine/threonine 
kinase (AopO), tyrosine phosphatase (AopH), and ADP-
ribosylating toxin (AexT) have been extensively studied. 
The activity of T3SS toxins leads to disorders in signal-
ling pathways and reorganization of the cell cytoskeleton, 
thus contributing to phagocytosis impairment, as proven 
in numerous scientific reports (see Table 1) (Vanden 
Bergh & Frey, 2014; Origgi et al., 2017; Soto-Davila et 
al., 2019). The bi-functional ADP ribosylating – GTPase 
activating protein (AexT) is one of the effector proteins 
secreted via the T3SS system exerting a detrimental im-
pact on the cell cytoskeleton and causing disruption of 
actin filaments in target cells (Fehr et al., 2007; Vilches 
et al., 2008). Increased mortality resulting from the pres-
ence of the AexU effector in a mouse model of Aero-
monas infection has been reported based on comparative 
genomic and functional tests of virulence genes (Grim 
et al., 2013). Characterization of virulence determinants 
in A. hydrophila proved that the virulence was associated 
with a combination of virulence factors: Act (T2SS ef-
fector), ExoA (exotoxin A), AexU (T3SS effector), and 
hemolysin co-regulated protein (Hcp, T6SS effector) or 
the presence of one of them (Grim et al., 2014).

Effectors, secreted and translocated via the T3SS sys-
tem, may induce host’s inflammatory response (Asrat et 
al., 2015; Soto-Davila et al., 2019). This was demonstrat-
ed for the AoP effector, which inhibits the NF-κB sig-
nalling pathway contributing to modulation of the host’s 
inflammatory response (Fehr et al., 2006). Influence on 
the host’s immune response, especially by down-reg-
ulation of the process, has been also suggested in the 
case of other protein effectors, such as Ati2, AopN, and 
ExsE (Vanden Bergh et al., 2013). Origgi and others 
(Origgi et al., 2017) demonstrated that infection of the 
rainbow trout (Oncorhynchus mykiss) with Aeromonas salmo-
nicida strains with both, fully functional and secretion-
impaired T3SS, was related to a strong immune suppres-
sion. The infection was also shown to be fatal only in 
the presence of fully functional T3SS, while the lack of 
T3SS was neither related to an immune suppression nor 
to death of the rainbow trout. These results confirmed 
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Table 1. Aeromonas effector proteins with defined mechanisms of action

Virulence-related 
genes

Secretion 
system

Mechanism of pathogenesis References

act 2 T2SS Cytotoxic enterotoxin with hemolytic, cytotoxic, and enterotoxic 
activities.

(Sha et al., 2005)

Induced upregulation of genes involved in immune responses (e.g., 
IL-8) and apoptosis (e.g., Bcl-2-like genes). 

(Galindo et al., 2003

Activation of MEK1, JNK, ERK1/2, and c-Jun of the MAPK pathway;
induced classical membrane blebbing; increased production of mi-
tochondrial cytochrome C, caspase-3, -8, and -9 activation.

(Galindo et al., 2004)

aexU T3SS Highly cytotoxic ADP-ribosyltranferase activity (ADPRT) to the host 
proteins. 

(Braun et al., 2002)

Disruption of actin filaments and cell rounding, chromatin conden-
sation, activation of caspase 3 and 9 (initiating host cell apoptosis). 

(Sierra et al., 2007)

GTPase-activating protein (GAP) activity mainly responsible for the 
host cell apoptosis and disruption of actin filaments, and inhibition 
of NF-κB signalling.

(Sierra et al., 2010)

Ability to co-localize with β4-integrin resulting in cytotoxicity to the 
host cells.

(Abolghait et al., 2011)

aexT T3SS Highly cytotoxic ADP-ribosyltranferase activity (ADPRT) to the host 
proteins.

(Braun et al., 2002; Burr et al., 
2003; Vilches et al., 2008)

Promotes actin depolymerization. (Braun et al., 2002; Burr et al., 
2003; Vilches et al., 2008; Van-
den Bergh et al., 2013)

Bifunctional toxin, possesses a GTPase‐activating domain and an 
ADP‐ribosylating domain, which ADP‐ribosylates both muscular and 
non‐muscular actin. Both domains fulfill an independent role in the 
actin depolymerization and cell rounding.

(Burr et al., 2005; Fehr et al., 
2006)

aopP T3SS Inhibitory activity against the NF-κB pathway (NF‐κB pathway inhibi-
tion is highly proapoptotic after simultaneous cellular stimulation of 
the tumor necrosis factor‐α).

(Dacanay et al., 2006; Fehr et 
al., 2006; Jones et al., 2012)

Induces apoptosis of a mammalian cell. (Jones et al., 2012)

aopH T3SS Putative tyrosine phosphatase. (Beaz-Hidalgo & Figueras, 
2013; Vanden Bergh et al., 
2013)

Dephosphorylation of protein tyrosine residues in complexes of 
focal adhesion at the cellular membrane, leading to loss of the focal 
adhesion complex, changes in actin cytoskeleton, and prevention of 
phagocytosis.

(Najimi et al., 2009; Broberg & 
Orth, 2010)

Induces cytotoxicity in HeLa cells after transfection. (Dacanay et al., 2006)

aopO T3SS Remains poorly understood. (Sha et al., 2007)

Putative serine/threonine kinase. (Dacanay et al., 2006; Vanden 
Bergh et al., 2013; Menanteau-
-Ledouble & El-Matbouli, 2016; 
Bartkova et al., 2017)

Disturbs the normal distribution of actin in the host cell. (Groves et al., 2010)

ati2 T3SS Suspected of having inositol polyphosphate phosphatase activity. (Reith et al., 2008)

Ati2 is toxic to the host cell in a catalysis-dependent manner. (Dallaire-Dufresne et al., 2013)
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that T3SS and T3SS effector proteins/toxins have a bi-
directional influence and contribute to destabilisation 
of the cell cytoskeleton, causing disturbance of normal 
physiological functions (such as preservation of cellular 
architecture, vesicular transport, phagocytosis). Simul-
taneously, this leads to deactivation of the host alarm 
system recognizing infection and inducing immune re-
sponse. A predominant role of the complex interactions 
between T3SS effectors was highlighted in this activity.

The T3SS system is a sophisticated nano-syringe de-
vice which consists of ~20–25 different proteins and 
includes three main elements (Burkinshaw & Strynadka, 
2014; Notti & Stebbins, 2016; Deng et al., 2017; Wagner 
et al., 2018; Pena et al., 2019):

– Secretion apparatus – a structure through which 
protein toxins/effectors are delivered across the inner 
and outer membrane (Gaytan et al., 2016; Deng et al., 
2017);

– Injection needle – a structure that facilitates bridging 
the gap between bacteria and the host cell, and transport 
of substances into the host (Park et al., 2018; Lara-Tejero 
& Galan, 2019);

– Translocation apparatus – a structure by which ef-
fectors and toxins are translocated from the needle 
(Akopyan et al., 2011; Mattei et al., 2011). 

A unique feature of the multiprotein T3SS system 
is the programmed secretion activity in some bacteria, 
which helps to avoid overproductive secretion of ef-
fectors (Gaytan et al., 2016). The mechanisms for T3SS 
have not yet been fully investigated. The secretion of ef-
fectors is considered to be hierarchical, as demonstrat-
ed by Lara-Tejero and others (Lara-Tejero et al., 2011). 
Type III secreted proteins are targeted to the secretion 
apparatus via a secretion signal located within the first 20 

N-terminal amino acids. The secretion signal is poorly 
preserved at the primary amino-acid sequence level, al-
though it shows some specific characteristics, e.g. enrich-
ment in serine, threonine, isoleucine, and proline. Addi-
tionally, customized chaperones that bind a ~100-amino 
acid domain placed immediately downstream of the ami-
no-terminal secretion signal for substrate targeting are 
necessary. In a partially unfolded state retaining its sec-
ondary structure, this domain is held by binding to the 
chaperone. The secondary structure configuration is an 
additional targeting signal, determines the location of the 
bound substrate in the secretion hierarchy, and primes 
the substrates for secretion (Galan & Waksman, 2018).  

T6SS SECRETION SYSTEM AND EFFECTOR PROTEINS

Another secretion system that has been identified in 
Aeromonas is T6SS, i.e. the so-called Vas (virulence-as-
sociated secretion). T6SS, like T3SS, is a Sec independ-
ent system with an ability to transport protein effectors 
(Lien & Lai, 2017) directly to the cell surface or the host 
cell (Pukatzki et al., 2009; Trunk et al., 2018; Lewis et al., 
2019; Fernandez-Bravo & Figueras, 2020). The effector 
valine-glycine repeat G proteins (VgrG) and hemolysin 
co-regulated protein (Hcp) are the best known among 
the secreted ones (Whitney et al., 2014). Translocation of 
T6SS-secreted Hcp in human colonic epithelial cells in-
fected with A. dhakensis has been investigated by Suarez 
et al. Translocation has been shown to lead to apopto-
sis of host cells following activation of caspase 3 (Su-
arez et al., 2008). Other research has indicated an inhibi-
tory effect of Hcp on bacterial phagocytosis (Suarez et 
al., 2010). In another paper, cytotoxic effects of VgrG1 

Virulence-related 
genes

Secretion 
system

Mechanism of pathogenesis References

vgrG1 T6SS ADP-ribosylating toxin that is able to interrupt the host cell cytoske-
leton and induce apoptosis in HeLa cells. 

(Suarez et al., 2008; Suarez et 
al., 2010; Sha et al., 2013)

VgrG-2 negatively affects bacterial motility, while VgrG-3 works to 
positively influence motility; VgrG-1 does not directly influence mo-
tility, but is necessary for the activity of VgrG-2 and VgrG-3.

(Sha et al., 2013)

VgrG-1 negatively affects protease production in the absence of 
VgrG-2 and VgrG-3. 
All VgrGs play a role in biofilm formation (VgrG-2 and VgrG-3 are 
critical in regulating biofilm formation).

(Sha et al., 2013)

(Sha et al., 2013)

All VgrG proteins form a trimeric needle‐like structure, allowing bac-
teria to penetrate the membrane and to transport effector proteins 
upon target cell contact.

(Bonemann et al., 2010)

hcp T6SS Translocation to the target host cell is followed by apoptosis after 
caspase activation. 

(Suarez et al., 2008)

Prevents phagocytosis. (Suarez et al., 2010)

Inhibited proinflammatory cytokine production; induced immu-
nosuppressive cytokines, such as interleukin-10 and transforming 
growth factor-b.

(Suarez et al., 2010)

Forms stacked hexameric rings to create a tube topped with VgrG 
tips (the needle-like complex allows bacteria to puncture the host 
cell and deliver effectors into the cell).

(Ho et al., 2014; Russell et al., 
2014; Cianfanelli et al., 2016)

Hcp1 positively affects biofilm formation (opposite effect to Hcp2). 
Hcp3 positively regulates biofilm formation (in the presence of Hcp1 
and Hcp2)

(Wang et al., 2018)

Negative effect of Hcp1 on the bacterial motility and protease pro-
duction. Increased bacterial mortality and protease production.

(Sha et al., 2013)
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on host cells via ADP-ribosylation of actin were demon-
strated (Suarez et al., 2010). 

The type VI secretion apparatus is a versatile molecu-
lar machine consisting of two parts, namely a syringe-
like structure extending to the cell membrane and a 
membrane-bound protein complex (Ho et al., 2014). Re-
cent studies have shown that the syringe-like structure is 
structurally analogous to the bacteriophage systolic tail 
(Zoued et al., 2014; Basler, 2015), although it is much 
longer than the systolic tail (Veesler & Cambillau, 2011; 
Uchida et al., 2014). It is assumed that the syringe-like 
structure includes the VgrG, Hcp, and VipA/VipB pro-
teins (Uchida et al., 2014). Sha and others (Sha et al., 
2013) evaluated the role of T6SS effector proteins co-
regulated by hemolysin (Hcp) and valine-glycine repeat 
G proteins (VgrG: VgrG-1, -2 and -3) in Aeromonas hy-
drophila pathogenesis. Besides their predicted role as 
structural components and effector proteins, the experi-
mental data clearly indicated that Hcp and VgrG paral-
ogs also affected bacterial motility, protease production, 
and biofilm formation. The results showed that the Hcp 
and VgrG paralogs found in the T6SS cluster were large-
ly involved in formation of the T6SS structures, while 
Hcp-1 and VgrG-1 located outside the T6SS cluster were 
T6SS effectors. Considering the influence on bacterial 
physiology, Hcp-1 exerted an effect on bacterial motility 
and production of a protease; in its absence, an increase 
in both types of activity was noticed. Similarly, VgrG-1 
has been found to play an important role in regulating 
bacterial protease production, while VgrG-2 and VgrG-3 
were crucial in regulating bacterial motility and biofilm 
formation. The contribution of two T6SS effectors of 
Aeromonas hydrophila to their virulence and the function 
of T6SS in both in vitro and in vivo models of infection 
have been established (Sha et al., 2013). Recent analysis 
of the hcp1 and vgrG1 genes from T6SS has demonstrat-
ed that their deletion from a virulent A. hydrophila isolate 
leads to reduction of their virulence (approx. 2-fold) in 
relation to the parent strain (Tekedar et al., 2018). This 
proves a significant contribution of these genes in the 
Aeromonas virulence potential. The list of T3SS, T2SS, 
and T6SS effector proteins with defined biochemical ac-
tivities is included in Table 1.

OUTER MEMBRANE VESICLES: SECRETION SYSTEM 
TYPE 0

In the last few years, a new secretion system called 
type 0 has been described in Gram-negative bacteria. 
This system releases molecules inside particles derived 
from the outer membrane, called the outer membrane 
vesicles (OMVs), into the extracellular environment 
(Jan, 2017; Shehata et al., 2019). OMVs are spherical 
nanoparticles with a diameter in a range of 50 to 250 
nm. They are formed by the lipid bilayer, phospholipids, 
and outer membrane proteins. The vesicles arise when a 
protuberance develops in the membrane, which is even-
tually released as a vesicle. Several functions of OMVs 
have been described, including DNA transport (Avila-
Calderon et al., 2018). Although OMVs have been stud-
ied extensively in bacterial pathogens, the data on their 
composition are still incomplete. Avila-Calderón et al. 
performed a proteomic analysis to determine the com-
position of purified OMVs from A. hydrophila ATCC® 
7966TM and their effect on host cells. The authors found 
211 unique proteins in OMVs from A. hydrophila, among 
which the HcpA protein, RtxA toxin, and haemoly-
sin Ahh1 are well-known determinants of virulence. It 

has been also shown that OMVs induced activation of 
lymphocyte and monocyte apoptosis. Over-expression 
of pro-inflammatory cytokines was also demonstrated 
(Avila-Calderon et al., 2018). Due to their high immu-
nogenicity, OMVs have been successfully applied as a 
vaccine platform against sepsis and bacterial meningitis. 
The use of Gram-negative OMVs as a vaccine platform 
is facilitated by engineering heterologous antigens to 
the vesicles. Since antigens retain a native conformation 
and are able to target a specific immune response, addi-
tion of heterologous proteins to OMVs has become a 
very promising strategy in the field of bioengineering of 
bacterial outer membrane vesicles as a vaccine platform 
(Gerritzen et al., 2017).

CONCLUSION

Pathogenesis of Aeromonas infections is regarded to 
be multifactorial. Knowledge about the contribution of 
virulence determinants, including extracellular hemo-
lysins, aerolysin, and effector proteins/toxins secreted via 
secretion nanomachines, is crucial and provides valuable 
insights into  pathogenic mechanisms. The presence of 
factor-encoding and regulatory genes which can modu-
late bacterial virulence is associated with high variability 
between strains and species. Gene expression within Ae-
romonas species can be also differentiated, depending on 
the environmental conditions, such as the human host 
or water. Protein secretion systems are critical to bacte-
rial virulence and interactions with other organisms. Ae-
romonas utilize various secretion machines, e.g. two-step 
T2SS system, for secretion of bacterial toxins and pepti-
dases, including GCAT and aerolysin. Unlike T2SS, T3SS 
enables one-step secretion and translocation of microbial 
toxins or effector proteins with diverse biochemical ac-
tivities into the host cells, causing disruption of the actin 
cytoskeleton, induction of apoptosis, signal transduction 
prevention and phagocytosis. T3SS, as the common viru-
lence mechanism in Aeromonas, is one of the widely stud-
ied bacterial virulence determinants and its importance 
in the bacteria-host interactions is unquestioned. Among 
other weapons, T6SS is found in Aeromonas sp., which is 
used for both – the transport of microbial toxins into 
the host cell and secretion of some bacterial toxins, pro-
moting bacterial dissemination. What is important, both 
the T3- and T6-secretion systems operate independently, 
which significantly affects the bacterial virulence mecha-
nisms. Although various factors have been attributed to 
bacterial virulence, several others still remain to be dis-
covered (Reynolds, 2009; Khajanchi et al., 2010; Rangel et 
al., 2019; Reyes-Rodriguez et al., 2019). Recently, a grow-
ing number of scientific reports have suggested that en-
vironmental factors have a significant impact on the evo-
lution of new metabolic adaptations that may be associ-
ated with bacterial pathogenicity (Staib & Fuchs, 2014). 
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