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Increasing evidence suggests that long non-coding RNAs 
(lncRNAs) are involved in neuroblastoma (NB) patho-
genesis. The aim of this study was to elucidate the roles 
and underlying mechanism of non-coding RNA activated 
by DNA damage (NORAD) in childhood NB. Both pub-
lic data and clinical specimens were used to determine  
NORAD expression. Colony formation, cell proliferation 
and wound healing assays were performed to evalu-
ate NORAD effects on proliferation and migration of 
SH-SY5Y and SK-N-BE(2) cells. Flow cytometry was used 
to examine the cell cycle changes. The expression of 
genes and proteins involved in chromosomal instability 
was determined by qRT-PCR and western blotting, re-
spectively. Our results showed that low NORAD expres-
sion correlated with advanced tumor stage, high risk 
and MYCN amplification in both public data and clinical 
samples. Kaplan–Meier analysis indicated that patients 
with low NORAD expression had poor survival outcomes. 
Functional research showed that NORAD knockdown 
promoted cell proliferation and migration, and arrested 
the cell cycle at the G2/M phase. Moreover, the expres-
sion of the DNA damage sensor, PARP1, increased after 
NORAD knockdown, indicating a potential contribution 
of NORAD to DNA damage repair. NORAD silencing also 
affected the expression of genes and proteins related to 
sister chromatid cohesion and segregation, which are in-
volved in chromosomal instability and consequent ane-
uploidy. These results suggest that NORAD may serve 
as a tumor suppressor in NB pathogenesis and progres-
sion. Thus, NORAD is a potential therapeutic target and a 
promising prognostic marker for NB patients.
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INTRODUCTION

Neuroblastoma (NB) in children accounts for 13% 
of all pediatric cancer mortality, and the 5-year over-
all survival rate for high-risk NB children is less than 
40% (Maris et al., 2007; Louis et al., 2015; Matthay et al., 
2016). Its clinical impact and unique biology have gained 
attention in translational research. Although great efforts 
have been made by researchers and physicians, few gene 
alterations have been identified, such as MYCN ampli-
fication, telomerase reverse transcriptase (TERT) rear-
rangement, and anaplastic lymphoma kinase (ALK) and 
ATRX mutations (Molenaar et al., 2012; Pugh et al., 
2013; Peifer et al., 2015). With regard to drug discov-
ery, only Unituxin (dinutuximab) has been approved as 
a novel targeted drug for NB (Bartholomew et al., 2016). 
Recently, chimeric antigen receptor (CAR)-modified T 
cell therapy has been suggested as a promising meth-
od for treating NB, but its utility and safety were still 
controversial during preclinical research (Kunkele et al., 
2017; Richman et al., 2018). Difficulties in NB therapy 
emphasize the need to clarify the mechanisms underlying 
NB pathogenesis.

Apart from major genome aberrations, it has been 
shown that the tumor microenvironment, epigenetic and 
transcriptional regulation are also involved in NB (Do-
mingo-Fernandez et al., 2013; Pandey et al., 2015; Borri-
ello et al., 2016). Long non-coding RNAs (lncRNAs) are 
transcripts with no protein-coding ability. Functionally, 
lncRNAs contribute to epigenetic regulation by interact-
ing with cellular macromolecules such as DNA, RNA 
and protein (Ulitsky et al., 2013; Schmitt et al., 2016). 
It has been reported that MEG3, HCN3 and linc01105 
negatively correlate with the NB stage (Tang et al., 2016), 
while NBAT1 and SNHG16 control NB progression 
through cell proliferation and migration (Pandey et al., 
2014; Yu et al., 2019). As molecular sponges, NeD125 
and KCNQ1OT1 regulate NB apoptosis by binding to 
miR-125b-1 and miR-296-5p, respectively (Bevilacqua et 
al., 2015; Li et al., 2020). For clinical prognosis, SNHG1 
has been identified as a novel predictor of high-risk NB 
survival (Sahu et al., 2016). These studies suggest that 
lncRNAs function as oncogenes and/or tumor suppres-
sors in diverse processes in NB. 

Recently, non-coding RNA activated by DNA damage 
(NORAD) has been found as a conserved lncRNA in 
the cytoplasm (Lee et al., 2016; Tichon et al., 2016; Mun-
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schauer et al., 2018). Functional studies have explored its 
effects in various tumor types. It has been shown that 
NORAD expression significantly increased in colorectal 
cancer (Wang et al., 2018), and promoted cell prolifera-
tion and invasion in cervical cancer (Huo et al., 2018). 
However, NORAD has also been reported to be a tu-
mor suppressor that is involved in hepatocellular carci-
noma via the PI3K/AKT pathway (Hu et al., 2017; Lei et 
al., 2018). Increasing inconsistent evidence has indicated 
that NORAD is involved in tumorigenesis, however, it is 
still unclear whether it is an oncogene or tumor suppres-
sor in NB tumorigenesis.  

To elucidate the precise function and underlying mech-
anism of NORAD in NB, both public data and clinical 
NB specimens were collected to examine its expression. 
Cell proliferation, colony formation and wound healing as-
says were performed in SH-SY5Y and SK-N-BE(2) cells 
to clarify NORAD function. To study the underlying 
mechanism of NORAD, cell cycle changes were evaluated 
by flow cytometry, and the expression of genes and pro-
teins involved in chromosomal instability was determined 
by qRT-PCR and western blotting, respectively. 

MATERIALS AND METHODS

Data processing and gene expression analysis. 
The Gene Expression Omnibus (GEO) public database 
was used to obtain gene chip and sequencing datasets 
on NB. Formatted family files and Series Matrix files of 
GSE62564 (Dataset 1: 498 cases) and GSE12460 (Data-
set 2: 51 cases) were downloaded to analyze NORAD 
expression in NB. Clinical information of tumor stages, 
grades and MYCN status was picked out from items in 
these files. Based on the survival data in Dataset 1, the 
prognostic value of NORAD was evaluated by Kaplan–
Meier survival analysis (https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE62564). Patients were divid-
ed into low-expression (249 cases) and high-expression 
(249 cases) groups based on the median expression of 
NORAD.

Clinical specimens and cell lines. To verify  
NORAD expression in NB, 40 NB tumor specimens 
stored in liquid nitrogen were obtained from Beijing 
Biobank for Diseases in Children, Beijing Children’s 
Hospital. All the samples in this biobank were collected 
along with signed informed consents. Clinical staging in-
formation was provided by the Pathology Department, 
based on the International Neuroblastoma Staging Sys-
tem (INSS). The Ethics Committees of Beijing Chil-
dren’s Hospital approved this study (2018-143). The SH-
SY5Y and SK-N-BE(2) cell lines were purchased from 
American Type Culture Collection (Manassas, VA, USA). 
The cells were cultured in DMEM containing 10% fetal 
bovine serum (FBS) and maintained in a humidified in-
cubator (5% CO2, 37°C).

RNA extraction and qRT-PCR assays. Tumor 
RNA was extracted using an RNA isolation kit (Zymo 
Research, USA) after tissues were homogenized in TRI-
zol reagent (Invitrogen, Carlsbad, CA, USA). A First 
Strand cDNA Synthesis Kit (Invitrogen) was used for 
RNA reverse transcription. SYBR Green Master mix was 
applied to detect gene expression using  ViiA7 Dx ma-
chine (Applied Biosystems, USA). The primer sequences 
for target genes and reference genes were listed in Sup-
plementary Table 1. The relative expression of RNAs 
was calculated using the 2-ΔCt method. 

Cell transfection. For cell transfection assays, the 
siRNA oligonucleotides for NORAD and negative con-

trol were synthesized by Sangon Biotech (Shanghai, 
China). These siRNAs were termed siRNA1#, siRNA2# 
and siNC, respectively. siRNA (100 nM) was transfected 
into cells using Lipofectamine RNAiMAX (Invitrogen). 
A series of experiments were performed after the me-
dium was replaced with normal culture medium 8 h after 
the transfection. The following siRNA sequences used 
were: NORAD: siRNA1#, 5′-UAGCCCUUCUAGAUG-
GAAAdTdT-3′ and siRNA2#, 5′-CCACUGGCU-
GUGCCCAGACdTdT-3′; negative control (5′-UUCUC-
CGAACGUGUCACGUdTdT-3′. 

Cell proliferation assay. Cell proliferation was moni-
tored by a cell kinetic analyzer (ACEA, Biosciences, 
USA) as described previously (Yu et al., 2018). Briefly, 
about 2 × 103 cells were seeded into an E-plate, incubat-
ed at 37°C for 24 h, transfected with siRNA and cul-
tured for 3 days. Data analysis was finally performed by 
the preinstalled software.

Colony formation assay. A total of 1 × 103 cells 
per well were plated into 6-well plates and transfected 
with siRNA. The medium was replaced every 3 days. 
Ten days later, 4% paraformaldehyde (Sigma-Aldrich, 
St. Louis, MO, USA) and 0.1% crystal violet (Sigma-
Aldrich) were used to fix and stain the cells for 10 min, 
respectively. Cell colonies were observed using a light 
microscope (IX73; Olympus, Japan).

Wound healing assay. Cells were plated into 6-well 
plates at 3 × 105 cells per well. A “wound” was created 
with a micropipette tip when the cells reached about 
50% confluence. The detached cells were gently removed 
with PBS and the attached cells were transfected with 
siRNA. The wound was observed and photographed 
by a light microscope at 0, 24, 48 and 72 h. AlphaView 
SA 3.4.0 (ProteinSimple, USA) was used to measure the 
wound width.

DNA damage and cell cycle analysis. To verify the 
role of NORAD in DNA damage, cells were exposed 
to doxorubicin (0.25 mM, 0.5 mM, 1 mM; Sigma-Al-
drich) for 24 h and NORAD expression was determined 
by qRT-PCR. The level of DNA damage sensor, poly 
(ADP-ribose) polymerase 1 (PARP1), was examined 
48 h after NORAD silencing. For cell cycle analysis, 
SH-SY5Y cells were transfected with siRNAs, incubated 
for 72 h, and then collected and resuspended in cold 
ethanol (70%) overnight at 4°C. The cells were pelleted 
and then incubated with working solution [2% FBS, 10 
μL propidium iodide (1 mg/mL, Sigma-Aldrich) and 2 
μL RNase A (10 mg/mL, TIANGEN, China)] for 30 
min at 37°C in the dark. The cell cycle was evaluated us-
ing a flow cytometer (FACSCalibur, BD, USA). At least 
1×104 cells were analyzed for each sample.

Western blotting. After transfection with siRNA, 
the cells were incubated for 72 h, harvested and lysed 
with cold RIPA buffer for 30 min on ice. Bicinchoninic 
acid (BCA) protein assay (Pierce, USA) was used to de-

Table 1. Cell cycle arrest of SH-SY5Y cells after siRNA transfec-
tion.

Groups
Distribution of cell cycle

G0/G1 S G2/M

siNC 59.7±2.43 27.2±3.42 13.1±1.10

siRNA1# 49.8±1.48* 30.1±0.43 20.1±1.90*

siRNA2# 50.4±2.11* 31.3±0.94 18.3±0.82*

Data are expressed as means ± S.D. from three independent experi-
ments (*p<0.05).

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62564
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62564
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termine protein concentration. Each protein sample (20 
μg) was separated by SDS-PAGE and electrophoretically 
transferred to a nitrocellulose filter membrane (PALL, 
USA). Non-fat milk (5%) was used to block the mem-
branes, which were subsequently incubated with the fol-
lowing primary antibodies overnight at 4°C: CDK1 (Ab-
cam, Cambridge, UK; 1:5 000), SMC3 (Abcam; 1:1 000), 
Aurora B (Abcam; 1:10 000), CENPA (Abcam; 1:1 000) 
and GAPDH (Abcam; 1:1 000). After incubation with 
secondary antibodies (IR800-IRDye®800, Abcam; 
1:5 000), the membranes were scanned using the Odys-
sey CLx system, and relative densitometric analysis was 
performed using ImageJ software. 

Statistical analysis. All graphs were generated us-
ing GraphPad Prism 5.0. The t-test was performed to 
analyze the differences between two groups. Multi-
ple comparisons were assessed by one-way ANOVA. 
Kaplan–Meier survival analysis was used to evaluate 
prognosis. p<0.05 was set as statistically significant. 
All the results were expressed as means ± standard 
deviations (S.D.).

RESULTS

NORAD expression negatively correlates with the 
clinical characteristics of NB

Based on stratification of tumor stage, risk group and 
MYCN status in public GEO Dataset 1 (GSE62564: 
498 cases), we found that NORAD expression gradual-
ly decreased with the increase in tumor stage (Fig. 1A). 
Additionally, NORAD was downregulated in the high-
risk NB (Fig. 1B) and MYCN amplification groups 
(Fig. 1C). Independent Dataset 2 (GSE12460: 51 cases) 
further confirmed the downregulation tendency of NO-
RAD (Fig. 1D and E). To further validate the results, 
we measured the NORAD expression level in 40 NB 
tissues and found that it was downregulated with the 

increase in tumor stage (Fig. 1F). These findings firmly 
indicated that NORAD expression negatively correlates 
with NB progression. 

NORAD silencing promotes cell proliferation

The effects of NORAD on cell proliferation were as-
sessed in SH-SY5Y and SK-N-BE(2) cells. We first con-
firmed that siRNAs could effectively silence NORAD 
expression (Fig. 2A). Furthermore, cell growth was sig-
nificantly elevated when NORAD was silenced (Fig. 2B 
and C). Consistent with this finding, the colony forma-
tion assay showed that NORAD knockdown promoted 
colony formation both in number and in size (Fig. 2D). 
Therefore, we speculated that NORAD downregulation 
promotes cell proliferation of NB cells. 

NORAD silencing promotes cell migration

The NORAD effects on cell migration were exam-
ined by the wound healing assay. The micropipette 
tip-made “Gap” represents a “wound”, and a decrease 
in the width of the “Gap” indicates cell migration. As 
shown in Fig. 3A and B, the “Gap” width in the NO-
RAD silencing group decreased faster compared to the 
control group, suggesting that NORAD knockdown 
significantly increased the cell migration ability. Quan-
tification analysis further confirmed that the difference 
in the “Gap” width between the NORAD silencing 
groups and the control group was statistically signifi-
cant (Fig. 3C and D).

NORAD silencing induces cell cycle arrest

NORAD is a non-coding RNA activated by DNA 
damage and we confirmed that NORAD was activat-
ed by doxorubicin-induced DNA damage (Fig. 4A). 
Moreover, the expression of PARP1, which is a DNA 
damage sensor, increased after NORAD silencing, sug-
gesting that NORAD contributes to DNA damage re-
pair (Fig. 4B). DNA damage is closely associated with 

Figure 1. NORAD expression negatively correlates with clinical characteristics of NB tumor. 
(A–C) NORAD expression in different NB risk groups, stages and MYCN status in Dataset 1. (D and E) NORAD expression in different stag-
es and MYCN status in Dataset 2. (F) NORAD expression was downregulated in higher clinical stages of the collected NB tumors. *p<0.05, 
**p<0.01, ***p<0.001.
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Figure 2. NORAD silencing promotes cell proliferation of SH-SY5Y and SK-N-BE(2) cells. 
(A) Validation of NORAD knockdown by siRNAs. (B, C) Cell proliferation of SH-SY5Y (B) and SK-N-BE(2) cells (C). (D) Representative photo-
graphs of SH-SY5Y and SK-N-BE(2) colonies. *p<0.05 vs control.

Figure 3. NORAD silencing promotes cell migration of SH-SY5Y and SK-N-BE(2) cells. 
(A, B) Representative wound healing images of SH-SY5Y (A) and SK-N-BE(2) cells (B) captured at 0, 24, 48 and 72 h. (C, D) Quantification 
of the wound width at the indicated time points with SH-SY5Y (C) and SK-N-BE(2) (D) cells. Scale bar: 200 μm. *p<0.05 vs control.
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the cell cycle, thus we examined the effect of NORAD 
on the cell cycle by flow cytometry (Fig. 4C). As 
shown in Fig. 4D and Table 1, the number of cells in 
the G0/G1 phase declined, while the number of cells 
in the G2/M phase increased after NORAD knock-
down. Cyclin-dependent kinase 1 (CDK1) is a critical 
player in promoting G2/M transition. We found that  
NORAD knockdown downregulated CDK1 at the 
mRNA and protein level, further confirming cell cycle 
arrest at G2/M in SH-SY5Y cells (Fig. 4E–G).

NORAD silencing impairs sister chromatid cohesion and 
segregation

Sister chromatid cohesion and segregation are criti-
cal events for maintaining chromosomal stability in re-
sponse to DNA damage. We examined the genes and 
proteins involved in these processes. As shown in Fig. 
5A, the sister chromatid cohesion-related genes: struc-
tural maintenance of chromosomes 1A (SMC1A), co-
hesin complex component (RAD21), extra spindle pole 
bodies like 1 (ESPL1) and polo-like kinase 1 (PLK1), 

Figure 4. DNA damage and cell cycle delay after NORAD silencing in SH-SY5Y cells. 
(A) Doxorubicin (0.25, 0.5 and 1 mM) stimulated NORAD expression in a dose-dependent manner. (B) The DNA damage sensor, PARP1, 
was elevated after NORAD silencing. (C) Flow cytometry was used to determine cell cycle changes, which were quantified (D), showing 
that the percentage of cells in the G2/M phase increased after NORAD silencing. (E–G) The mRNA and protein expression level of CDK1 
was downregulated after NORAD silencing in SH-SY5Y cells. *p<0.05 vs control.

Figure 5. Impairment of sister chromatid cohesion and segregation is induced by NORAD silencing. 
(A) mRNA expression of sister chromatid cohesion-related genes and (B) sister chromatid segregation-related genes in cells transfected 
with siRNAs. (C) Protein expression of SMC3, Aurora B and CENPA measured by western blotting and (D) relative densitometric analysis 
of the protein bands. *p<0.05 vs control. 
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were suppressed after NORAD silencing, while SMC3 
was significantly upregulated. Chromosomal passenger 
complex (CPC) is related to chromosome separation; 
our results demonstrated that the CPC component 
genes, Aurora B and centromere protein A (CENPA), 
were upregulated upon NORAD silencing, while inner 
centromere protein (INCENP) was downregulated (Fig. 
5B). The protein expression for the key genes was ex-
amined to confirm the deregulation of sister chromatid 
cohesion and segregation after NORAD knockdown 
(Fig. 5C and D).

High NORAD expression is critical for patient survival

To explore the prognostic value of NORAD, pa-
tients in Dataset 1 were divided into two groups ac-
cording to the median expression of NORAD: high 
expression group (249 cases) and low expression group 
(249 cases). Kaplan–Meier survival analysis was per-
formed to analyze event-free survival (EFS) and over-
all survival (OS). The results showed that the EFS was 
50.5% and 72.4% in low- and high-expression group, 
respectively, and the OS was 61.8% and 86.5%, respec-
tively (Fig. 6A and B), indicating that patients with low 
NORAD expression had poorer EFS and OS than pa-
tients with high NORAD expression. These results sug-
gest that NORAD is a potential prognostic marker for 
NB patients. 

DISCUSSION

In children, NB is the most common solid tumor, 
but NB pathogenesis still has not been comprehen-
sively understood after decades of research efforts. Ge-
nome instability is the most marked characteristic of 
cancer and recently lncRNAs, such as CCAT2, TERRA 
and NORAD, have been demonstrated to be involved 
in genome regulation (Ling et al., 2013; Cusanelli et al., 
2015; Lee et al., 2016). As a novel cytoplasmic non-
coding RNA, NORAD has been reported to preserve 
genome stability in human cells, but its effects and 
molecular mechanism in NB are unknown (Lee et al., 
2016, Munschauer, Nguyen et al. 2018). In the present 
study, we found that NORAD was downregulated in 
NB; this downregulation promoted cell proliferation 
of cell lines via chromosomal instability and predicted 
poor prognosis.

Deregulated gene expression is involved in tumo-
rigenesis. Previous studies have explored genome-scale 
transcriptional alterations in NB by microarray and 
RNA-sequencing (Wang et al., 2014; Henrich et al., 
2016). Herein, we found that NORAD expression neg-
atively correlated with the NB stage and was downreg-

ulated in both high-risk and MYCN-amplified NB (Fig. 
1A–C). Independent Dataset 2 (GSE12460) and clini-
cal samples further validated our results (Fig. 1D–F). 
Consistent with our findings, low NORAD expression 
has been also observed in colon cancer and hepatocel-
lular carcinoma (Hu et al., 2017; Lei et al., 2018). De-
creased NORAD expression in tumors suggests it may 
be a tumor suppressor (Ventura 2016), but this specu-
lation has not been confirmed in detail. Additionally, it 
has been reported that NORAD was highly expressed 
and played oncogenic roles in esophageal squamous cell 
carcinoma (Huo et al., 2018; Sun et al., 2018; Wang et 
al., 2018). Tumor type-dependent expression of NO-
RAD makes its function and mechanism more complex 
to elucidate, thus it is still unclear whether NORAD is 
involved in NB tumorigenesis. 

Previous studies have demonstrated that NORAD 
promoted tumor cell proliferation and invasion, and 
epithelial-mesenchymal transition (EMT) (Huo et al., 
2018; Kawasaki et al., 2018). To clarify the effects of 
NORAD in NB, functional studies were performed. 
NORAD silencing significantly stimulated cell prolifera-
tion and migration of SH-SY5Y and SK-N-BE(2) cells 
(Figs. 2 and 3), which is in line with the finding that 
NB with downregulated NORAD showed high tumor 
stage and risk. Taken together, the results from the 
public datasets, clinical validation and in vitro study veri-
fied that NORAD acts as a tumor suppressor in NB 
progression. 

Tumor cell proliferation is associated with various 
biological processes, such as cell death, apoptosis, cell 
cycle and DNA damage (Hanahan et al., 2011). Our re-
sults showed that NORAD expression was significant-
ly increased in a dose-dependent manner upon DNA 
damage by doxorubicin in SH-SY5Y cells (Fig. 4A). 
However, whether NORAD plays a role in DNA dam-
age promotion or DNA damage repair has not been 
reported. With regard to this issue, the DNA damage 
sensor, PARP1, was examined. As PARP1 can recog-
nize DNA breaks and serves as a scaffold for early 
recruitment of repair proteins to facilitate DNA repair 
(Wei et al., 2016; Ray Chaudhuri et al., 2017), the eleva-
tion in PARP1 expression after NORAD knockdown 
suggests that NORAD contributes to DNA damage re-
pair (Fig. 4B). Generally, cell cycle checkpoints arrest 
the cell cycle to maintain genome stability in response 
to cellular DNA damage (Malumbres et al., 2009; Uryga 
et al., 2016). Our data showed that the cell number in 
the G0/G1 phase declined, whereas it increased in the 
G2/M phase after NORAD knockdown (Fig. 4C and 
D). Moreover, CDK1, which is a critical player in pro-
moting G2/M transition (Otto et al., 2017), was signifi-
cantly downregulated at the mRNA and protein level 

Figure 6. Kaplan–Meier survival analysis for NB patients in GSE62564 dataset. 
The Kaplan–Meier curves for (A) event-free survival (EFS) and (B) overall survival (OS) of NB patients with low NORAD expression versus 
high NORAD expression. The p-values were obtained by the log-rank test. p<0.001.
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(Fig. 4E and F). Cell cycle delay provides more time 
for DNA damage repair and reduces gene alterations. 
Our results indicated that NORAD silencing induced 
DNA damage and cell cycle arrest at the G2/M transi-
tion. These findings establish the functional relevance 
of NORAD in DNA damage and G2/M phase arrest, 
however, the underlying molecular mechanism remains 
unclear.

During the G2/M phase transition, sister chroma-
tid cohesion and accurate chromosome segregation are 
pivotal mechanisms safeguarding genome stability and 
mitotic processes (M phase) (Makrantoni et al., 2018). 
Recently, NORAD has been reported to assemble a 
topoisomerase complex by interacting with RNA-bind-
ing motif protein X-linked (RBMX), and to function as 
a potent molecular decoy for PUMILIO proteins. Both 
RBMX and PUMILIO proteins are cohesion regula-
tors that maintain proper cohesion of sister chromatids 
(Matsunaga et al., 2012; Lee et al., 2016, Munschauer et 
al., 2018). Herein, we demonstrated that NORAD si-
lencing triggered CIN by interfering with sister chro-
matid cohesion and chromosome segregation during 
mitosis. We found that the expression of SMC1A, 
RAD21, ESPL1 and PLK1 was remarkably suppressed 
after NORAD silencing, while SMC3 was significantly 
increased (Fig. 5A, C and D). These genes are com-
ponents of cohesin and associated regulators. Cohesin 
complex forms a ring-shaped molecule to entrap sister 
DNA molecules together until the onset of anaphase 
(Peters et al., 2012). The core of this ring is composed 
of SMC1, SMC3 and the kleisin subunit, RAD21 (Eich-
inger et al., 2013). The connection is cleaved and re-
leased by ESPL1 and PLK1, thereby initiating further 
chromosome segregation (Losada, 2014). Herein, the 
downregulation of cohesion-related proteins may ren-
der the cohesin ring less condensed and the cohesion 
process instable, which may cause subsequent dysfunc-
tion of chromosome segregation.

Chromosome segregation involves the partitioning 
of genomic material during metaphase and anaphase, 
which is dependent on highly conserved CPC. Our re-
sults showed that the level of CPC-related genes, Au-
rora B and CENPA, was increased, while for INCENP 
it was decreased after NORAD silencing (Fig. 5B–D). 
Although it is unclear how NORAD regulates CPC-re-
lated genes, the fact that it controls centromere compo-
nents by sequestering PUMILIO may account for this 
regulation to some extent (Lee et al., 2016). CPC cel-
lular localization is dynamic during the cell cycle and 
regulates the mitotic process (Carmena et al., 2012). 
It has a central role in the regulation of kinetochore-
microtubule attachments, and it controls the correct 
alignment of chromosomes on the spindle equator. The 
CPC translocates to the spindle midzone in anaphase 
and facilitates the movement of sister chromatids to 
the opposite poles (Ruchaud et al., 2007). In the pre-
sent study, deregulated expression of the CPC compo-
nent proteins suggested potential defects in chromo-
some segregation. A previous study has reported that 
NORAD inactivation induced anaphase bridges and mi-
totic slippage (Lee et al., 2016), which further supports 
our hypothesis. 

Defects in sister chromatid cohesion and deregu-
lated separation are involved in CIN and consequent 
aneuploidy. These events are characteristic features of 
human malignancies and have been proposed as impor-
tant drivers of tumor formation and progression (Hana-
han & Weinberg, 2011). NORAD inactivation has been 
previously reported to cause CIN and aneuploidy (Lee 

et al., 2016). Accordingly, NORAD downregulation-
induced genetic instability may account for NB tumor 
initiation, progression and poor outcome.

In conclusion, we demonstrated that NORAD is 
significantly downregulated in NB with high risk or 
high tumor stage. Clinically, patients with low NO-
RAD expression had a worse survival outcome than 
patients with high NORAD expression. Our function-
al study showed that NORAD silencing promoted cell 
proliferation, migration and G2/M cell cycle arrest. 
The underlying mechanism studies verified that NO-
RAD silencing caused defects in both sister chromatid 
cohesion and accurate separation, which are involved 
in DNA damage. Our results suggest that NORAD 
contributes to NB pathogenesis and progression by 
modulating sister chromatid cohesion and separation. 
NORAD is thus a potential therapeutic target and a 
promising prognostic marker for NB patients. This 
study demonstrated that lncRNA-mediated genome in-
stability is involved in the regulation of NB develop-
ment.
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