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Growth of mixed cancer cell population – in silico the size 
matters*
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Cancer heterogeneity is still underexplored and difficult 
to investigate. The whole network of factors engaged 
in tumor growth makes clinical cases, as well as the  in 
vivo  and in vitro  experiments, of limited use in terms of 
understanding cancer heterogeneity. Our idea was to 
start from scratch and focus on the simplest distinctive 
feature in a heterogeneous tumor, namely the cell size. 
To exclude any other factors, we created a rudimentary 
cellular automata model of mixed cancer culture with 
two lines of different cell sizes. We tested the model 
with various sets of parameters to explore how the cell 
size affects cancer co-culture growth. It turned out that 
the cell size plays a crucial role in  in silico heterogeneous 
tumor growth. The dominance of bigger cells decreases 
the number of cells in the overall mixed cancer popula-
tion. In contrast, the small cells increase the total num-
ber of cells, even without a parallel enlargement of the 
macroscopic tumor size. Predominance of the smaller 
cells is particularly visible under overcrowded condi-
tions. Although our model was primarily designed for 
verification of experimental hypothesis and as a mean 
for better understanding of the cancer heterogeneity 
itself, it also has some practical value. Our findings can 
affect today’s practice of estimating tumor growth based 
on its macroscopic size and may propose a new ap-
proach to interpreting histological data. After modifica-
tions, the model may serve to test other factors affecting 
growth of mixed populations of cancer cells differing in 
size.
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INTRODUCTION

In 1971, the United States President, Richard Nixon, 
declared war against cancer (Sporn, 1996). Scientists 
from all over the world eagerly joined this fight. At 
that time, the strategy seemed to be simple: identify the 

enemy, target it, and destroy. During the past few dec-
ades, we have learned that this is not so simple. Due to 
cancer heterogeneity, a regular war turned into a guer-
rilla war, with enemies moving fast, changing their size, 
shapes, uniforms, and blending into normal cells. As the 
battlefield changes, it is of utmost importance to better 
understand the enemy, its strengths and weaknesses, its 
capabilities, mechanisms of action, and avoidance.

Tumor heterogeneity is an important reason why the 
early approach to cancer treatment failed in many re-
spects (Burrell et al., 2013; Alizadeh et al., 2015). Most 
therapies have been focused on specific cancer cell lines, 
whereas the actual composition of a tumor keeps chang-
ing continuously. Clonal evolution (McGranahan & 
Swanton, 2017) alters both, the genetic make-up (Tura-
jlic et al., 2019) and the phenotype (Meacham & Mor-
rison, 2013) of the cancer cells. Moreover, mutual in-
teraction between the tumor and its niche additionally 
contributes to the complexity of the erratic development 
of cancer (Junttila & de Sauvage, 2013). All this makes 
the phenomenon of tumor heterogeneity very difficult 
to analyze, especially when one starts with cell popula-
tions resembling those observed in actual tumors. Thus, 
a well-controlled environment that allows one to observe 
the development of the cell heterogeneity from the very 
beginning is needed.

When starting to design a rudimentary model of a het-
erogeneous tumor, one has to establish a simple criterion 
of the heterogeneity. One of the simplest distinguishing 
features of a cell is its size. It is a well-known fact that 
the growth and the propagation of cancer vary depend-
ing on the cell size (Li & Lowengrub, 2014; Li et al., 
2015; Schmoller, 2017), and that the size of the cells in 
a heterogeneous tumor differs (Sastre-Garau et al., 2004; 
Ruan et al., 2019; Xu et al., 2020). Therefore indeed, the 
cell size may be a good starting point for analyzing the 
cell population heterogeneity. One can think, for exam-
ple, of creating a model of heterogeneous cancer popula-
tion by making cells differing in size grow together.

Going into details, it is possible to create an in vivo or 
in vitro co-culture model composed of two cancer lines 
that differ in respect to their cell size. Interestingly, simi-
lar cases are found in nature in the form of collision and 
mixed tumors (Seifert & Donath, 1996; Kroemer & Per-
fettini, 2014; Michalinos et al., 2015; Saad et al., 2019). 
While this approach is promising, it still inherits all the 
disadvantages of heterogeneous tumor cell populations 
mentioned above. There is a limited control over the 
experimental environment. Moreover, the other interac-
tions, besides cell size, must be engaged in such cases. 
As a result, the in vivo model consisting of two cell lines 
of different sizes is still hard to predict and impossible 
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to control, which does not make the study of the het-
erogeneity any easier.

The co-culture growing in vitro has a better chance of 
success. Here the researcher can at least influence the 
experimental setup and control the environmental con-
ditions. Unfortunately, to our knowledge, no such at-
tempts of mixing in vitro two cancer cell lines differing 
in size were reported. There is still a possibility to mix 
the cells in vitro and to monitor their growth and metas-
tasis in vivo (Steenbeek et al., 2018). However, even under 
such conditions the issue of the actual biological interac-
tions remains unexplored.

The only model that can rule out the other factors and 
focus on the one chosen parameter controlling growth is 
the in silico model. As the geometry is particularly easy to 
model, this approach is especially predestined for simu-
lating the effects of cell size. Consequently, the comput-
er co-culture model of cell lines differing in size seems 
to be the natural choice for the simplest model of the 
heterogeneous cancer population.

The main question posted in this paper is whether the 
cell size influences the kinetics and pattern formation of 
a growing heterogeneous population in silico. To answer 
this question, the following objectives are defined. The 
primary goal of this study is to create an in silico model 
of a mixed cancer culture. The second step is to deter-
mine the model parameters, namely the appropriate lat-
tice size for the simulations and the game of life rules 
required for modeling the cancer growth. The next and 
most important objective focuses on testing the model 
behavior with different parameter settings and estimating 
the influence of cell size on the mixed culture dynam-
ics and its pattern. Finally, the model potential and its 
limitations are outlined in a kind of “SWOT” analysis. 
Simultaneously with this in silico study, complementary in 
vitro and in vivo experiments are conducted to be report-
ed in future papers.

To create the in silico model, we chose the simple and 
well-established tool of cellular automata (CA) (Baer & 
Martinez, 1974; Wolfram, 1986; Adamatzky, 2018). This 
is a popular tool used for cancer growth simulations 
(Shirinifard et al., 2009; Szabo & Merks, 2013; Deutsch 
& Dormann, 2017). In CA models, the behavior of cells 
inhabiting the fixed lattice is determined by the number 
of neighbors. These local interactions result in the emer-
gence of a global pattern (Hadeler & Müller, 2018). This 
feature ensures that the experimenters do not control 
the simulation but simply allow the growing cancer to 
self-regulate. Moreover, the CA, due to its nature, is par-
ticularly useful for visualization of geometry. Taking this 
into account, the CA model is suitable for creating an 
environment where the kinetics and pattern of the grow-
ing heterogeneous population is affected by the cell size 
only.

The elementary set up in CA is one cell occupying 
one site in the lattice. Therefore, most of the CA models 
assume that the cell size is constant with respect to one 
another, and to the lattice spacing. The problem of cell 
size in CA was indirectly addressed. Chen and Mynett 
(2003) compared how a variable cell size influences sim-
ulation. However, they did not mix cells differing in size, 
but only compared the output run on a different lattice 
spacing (Chen & Mynett, 2003). Tzedakis et al. in one 
simulation used different lattices for cells and different 
lattices for nutrient and oxygen intake, yet the cancer 
cells stayed the same size (Tzedakis et al., 2014). Devel-
opment of the CA method allowed for departure from 
originally rigid lattices. The lattice-gas cellular automata 
(LGCA), the complex automata model (CxA) or the cel-

lular Potts models (CPM) gave, for instance, the possi-
bility to change the cell size (Graner & Glazier, 1992; 
Palmari et al., 1997; Wcisło et al., 2010). However, these 
changes usually are coupled with the cell cycle or the cell 
age and take place within pre-established limited ranges. 
Therefore, they do not relate to the entire population 
and do not allow for cell line differentiation. To fill this 
gap, we introduce the model that simulates the growth 
of two cancer cell lines on the same lattice. The cells in 
these lines can differ with respect to the cell size and 
the proliferation rate. The line-specific game of life rules 
may also be introduced, as well as the overall size of the 
initial population and the proportion of cells of the two 
lines. A proper manipulation of these parameters allows 
to explore in-depth the model boundaries and in differ-
ent context determines how the cell size affects the be-
havior of the heterogeneous cancer cell population.

MATERIALS AND METHODS

Model. The mixed cancer culture model proposed in 
this paper is a two-dimensional cellular automata model 
with the local interaction based on the Moore-type con-
figuration (Deutsch & Moreira, 2002). The lattice spacing 
can be empty or occupied by a cancer cell. In our mod-
el, there are two types of cells, Line1 (red) and Line2 
(blue). The fate of a cell depends on the number of 
neighbors of its own line, according to the implemented 
game of life (GoL) rules, which are set independently 
for each cell line. The model is available in two versions, 
with cells of identical size or cells of different sizes. This 
paper primarily explores the model with cells of different 
sizes. The model with identical cells was only used for 
comparison in the section “The size of the initial popu-
lation.“ The details regarding the model creation and its 
functionality can be found in the supplementary material. 
The program block diagram is presented in Fig. S1 (at 
https://ojs.ptbioch.edu.pl/index.php/abp/) and the pro-
cess of cell iterations is shown in Fig. S2 (at https://ojs.
ptbioch.edu.pl/index.php/abp/).

The following adjustments to original CA game of life 
were introduced in the mixed cancer culture model: (1) 
two different populations of cells were introduced; (2) 
additional parameters for user customization were made 
available, namely: a) the size of lattice, b) the cell size 
(the cells can be identical, or can differ fourfold in size), 
c) the number of cells in the initial population, d) the 
Line1:Line2 proportion in the initial population, e) the 
ratio of proliferation speeds, f) the rules of GoL; (3) the 
cell’s state occurring with a given probability.

In addition, the model offers a possibility to evaluate 
various distributions of cells in the initial population: a 
random uniform placement, a clustered placement with 
a chosen number of centers per line (one center selected 
per group returns a compact distribution of cells) and 
two other cases of metastatic scenario, where one of the 
cell lines invades the other and vice versa. The panel pre-
senting all of these possibilities is available in the sup-
plementary material (see Fig. S3 at https://ojs.ptbioch.
edu.pl/index.php/abp/). Each distribution is suited for a 
different purpose. The uniform distribution (supplemen-
tary video 1A at https://ojs.ptbioch.edu.pl/index.php/
abp/) reflects the situation of in vitro experiments with 
two cancer lines mixed ex vivo whereupon serving as an 
inoculum for a new co-culture. It also reflects the so-
called “mixed tumors” in which several types of histo-
logically different cancer cells grow uniformly distributed 
(see, e.g., Ohata, 2018; Kurimoto et al., 2020). Because 
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this is the simplest setup and it simulates the first step in 
mixed cancer culture examination, uniform distribution 
was chosen for this introductory paper. Therefore, the 
cells of the initial population in all following experiments 
are evenly distributed all around the lattice. Clustered 
placement would be more appropriate for simulation of 
in vivo experiments, where the initial populations of can-
cer cells are usually more compact. Those well represent 
the so-called “collision tumors” (supplementary video 1B 
and 1C at https://ojs.ptbioch.edu.pl/index.php/abp/) 
recently widely reported in numerous case studies (see 
e.g. Sterz et al., 2019; Hobbs et al., 2020; Mizuta et al., 
2020). Finally, the last two cases (supplementary video 
1D and 1E at https://ojs.ptbioch.edu.pl/index.php/
abp/) being actually a special case of collision tumors 
(Bao et al., 2020) can model the rare instances where one 
type of cancer metastasizes to another tumor (Wong et 
al., 2017; Bao et al., 2020). As we analyze the cases of 
tumors differing in cell size, we show here the case (sup-
plementary video 1D) when the tumor of smaller cells 
(Line2, blue) metastasizes to the tumor of bigger cells 
(Line1, red), and vice versa (supplementary video 1E at 
https://ojs.ptbioch.edu.pl/index.php/abp/).

Parameter setting.
(a) The lattice size consists of sites that are all avail-

able for cancer cells to inhabit. Thus, a 10k size lattice 
offers 10,000 places that can be occupied by the smaller 
cells. The lattice is squared, so not all sizes are available, 
only those whose square root returns an integer. There-
fore, the so-called “100k” lattice, in reality, has 99856 
sites available. For the sake of clarity in this paper, we 
keep using the “100k” name. However, for all the calcu-
lations and data analysis, naturally, the accurate size was 
used.

In order to determine the size of lattice appropriate 
for experiments, the dependency between the lattice size 
and the model behavior was specified. Three lattices of 
different scales of 10k, 100k, and 1000k were tested with 
simulations performed under standard conditions (see 
Table 1a). The results were analyzed as follows.

First, the visual examination of the simulation was 
performed to determine how changes in the lattice influ-
ence the visual pattern of the model. No visible differ-
ences were identified from the results (see supplementary 
material Fig. S4 at https://ojs.ptbioch.edu.pl/index.php/
abp/).

Next, we compared the parameters of growth curves 
used for fitting the data. The data consist of the num-
ber of cells counted during each iteration of the in silico 
cancer growth. The output was fitted with the Gompertz 
function commonly used for describing cancer growth 

(Gompertz, 1825; Bassukas & Maurer-Schultze, 1988; 
Castro et al., 2003). This function is characterized by the 
“a” parameter which is the upper asymptote (interpreted 
as the maximal size of the cell population or the maxi-
mal tumor size), the growth-rate coefficient – parameter 
“k” which affects the slope of the function and the “c” 
parameter indicating the time of inflection (see supple-
mentary material Fig. S5 at https://ojs.ptbioch.edu.pl/in-
dex.php/abp/) (Tjørve & Tjørve, 2017). The comparison 
of each growth curve parameters (a, k, c) between matri-
ces of 10k, 100k, and 1000k showed no statistical differ-
ences (see supplementary material Table S1 at https://
ojs.ptbioch.edu.pl/index.php/abp/). The mathematical 
function describing cancer growth in these three scales 
remains the same.

Finally, the number of cells for each iteration was 
scaled and compared to others. So, at each step of the 
iteration, the population of cells growing on the 10k lat-
tice was multiplied by 100, on the 100k lattice was multi-
plied by 10 (exactly by 10.014) and the population raised 
on the 1000k lattice remained unchanged. The results 
presented in supplementary Fig. S6 (at https://ojs.ptbi-
och.edu.pl/index.php/abp/) show that the data overlap 
within the statistical error.

Either the visual examination, the comparison of the 
growth curve parameters, or the scaling test ensure that 
the mixed culture model is insensitive to changes in the 
lattice size and can be linearly scalable. A minor deroga-
tion was observed for simulations run on the 10k lattice, 
which indicates that using lattices of smaller size may be 
problematic. Therefore, for the experiments presented in 
this paper, the optimal size of 100k was chosen. The ad-
vantage of this choice is the low computational power 
required for such simulation without loss of precision.

(b) The cell size in the mixed culture model differs, 
i.e., the cells of Line1 (red) are four-times bigger than 
these of Line2 (blue). In the second version of this pro-
gram, the cells of Line1 and Line2 are of the same size, 
yet still differ in terms of other parameters.

(c) The size of the initial population in the paper is 
given in total (as the sum of cells from both lines) and, 
if not mentioned otherwise, is set at 2.5k. For the size of 
2.5k, for example, there are 1250 cells of Line1 and 1250 
cells of Line2 at the beginning of the simulation.

(d) Line1:Line2 proportion determines the distribu-
tion of cells in the initial population. With one exception 
(see section “The Line1:Line2 proportion in the initial 
population”), the simulations were set out with an equal 
number of Line1 and Line2 cells. This point aims to test 
how the distribution between Line1 and Line2 cells in-
fluences the resultant cell growth. For instance, the pro-

Table 1. The game of life rules. 
(a) The standard GoL rules aim to mimic cancer growth. These rules were used for experiments carried out in this paper unless explicitly 
was stated otherwise. (b) “Conway,” the GoL rules, originally proposed by John Conway (Gardner, 1970). (c) The “maximum growth” rules 
that allow for the maximum growth of cell cancer lines.

GoL rules: (a) standard (b) Conway (c) maximum growth

state cause probability number of  
neighbors probability number of 

neighbors probability number of 
neighbors

cell dies
of loneliness 0.1 [0, 1] 1 [0, 1] 0 [0,1]

from overpopulation 0.5 [7, 8] 1 [4, 8] 0 [7, 8]

cell stays alive 1 [2, 6] 1 [2, 3] 1 [2, 6]

cell is born

range 1 of potential parents: 0.25 [1, 2] 0 [1, 2] 1 [1, 2]

range 2 of potential parents: 0.75 [3, 6] 1 [3, 3] 1 [3, 6]

range 3 of potential parents: 0.9 [7, 8] 0 [4, 8] 1 [7, 8]
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portion of 3:1 means that in the initial population, there 
were three times more cells of Line1 than cells of Line2. 
Numerically, for the initial population of 2.5k, it would 
be 1875 cells of Line1 and 625 cells of Line2.

(e) The proliferation rate is set for each cell line 
separately, and it controls how fast the line is grow-
ing. Depending on the difference between proliferation 
rates (∆p) of both lines, additional iterations for Line1 or 
Line2 can be granted (see supplementary material Fig. S1 
at https://ojs.ptbioch.edu.pl/index.php/abp/). The ∆p 
parameter is a result of subtraction of the proliferation 
rates value of Line2 from Line1. Thus, if ∆p is less than 
zero, extra iteration is added to Line2, if ∆p is greater 
than 1, the extra iteration is granted to Line1. In prac-
tice, if the proliferation rate of Line1 is 0.3 and Line2 
is 1, for each iteration of Line1 there will be three itera-
tions of Line2. With the exception of section “The pro-
liferation rate of cell lines“ this proliferation rate is set at 
1 for both lines.

(f) The GoL rules are set independently for Line1 
and Line2. For these experiments, however, the rules 
were kept identical. Compliance with this condition al-
lows us to set the baseline for testing other parameters. 
When defining the GoL rules, a user can freely decide at 
what number of neighbors (in the Moore configuration) 
the cell is born (divides) and when it stays alive. If the 
number of neighbors is not sufficient, the cell can die 
out of “loneliness,” but, on the other hand, when too 
many neighbors accompany the cell, it dies from over-
population. Also, the occurrence of these states came 
with user-defined probability. To gain more control over 
the model, three probability thresholds are introduced 
for cell birth and two thresholds for cell death.

The original game of life was defined by John Con-
way (Gardner, 1970; Adamatzky, 2010). This British 
mathematician rediscovered a tool introduced earlier by 
Stanislaw Ulam. For Ulam, the cellular automata were 
envisioned as a model of the computational machine 
(Neumann & Burks, 1966) and, as such, gained quite an 
advanced level of sophistication. In the hand of Conway, 
initially complex CA turned into a simple three-states 
cellular game ruled by straightforward rules (Table 1b). 
This change helped to popularize CA and introduce it to 
the broad public. Therefore, Conway’s GoL rules were 
the starting point also for our experiments. Unfortu-
nately, the acceptance of the Conway’s game of life rules 
leads very quickly to the drastic downfall of the cell pop-
ulation. At some point, the simulation is stabilized, and 
further growth is impossible. The collapse of the popula-
tion at the first steps of iterations is caused by the rule 
of cellular death, i.e., the cell without a neighbor or with 
only one adjacent cell dies, whereas the condition that 
only cells with two or three neighbors stay alive prevents 
further growth of the co-culture. Therefore, the Con-
way GoL rules are unsuitable for modeling the dynam-
ics of cancer growth. The rules have to be modified in 
a way to meet this criterion. In this paper, we propose 
two examples of such changes, the so-called “maximum 
growth” (Table 1c) and the “standard” rules (Table 1a). 
The first one allows cells to proliferate every time a free 
site is available in the neighborhood and completely 
excludes the possibility of cell death. In contrast, the 
“standard” GoL rules (see Table 1a) are intended to be 
closer to real-life cancer behavior. These rules adjust the 
probability of occupying a free place according to the 
number of neighbors. In addition, they allow cells to 
die from overpopulation (necrotic effect) and very rarely 
from loneliness (when deprived of communication with 
other cells). The probabilities associated with the occur-

rence of these states were chosen with the trial-and-error 
method in such a way as to reflect the inner logic of bi-
ological phenomena. Therefore, as a number of potential 
parents around a free site grows, so does the probability 
of a new cell to be born there. In a highly compact en-
vironment, the odds for a cell to survive are 0.5, and 
because cancer cells usually do not need reinforcement 
from other cells to grow and survive, the probability of 
death caused by loneliness is only 0.1.

Simulations performed under maximum growth or 
standard rules with high accuracy (R-square 0.999) are 
fitted to the Gompertz function (see supplementary ma-
terial Fig. S8 at https://ojs.ptbioch.edu.pl/index.php/
abp/). This strongly suggests that a mixed cancer model 
with these rules is suitable for simulating cancer growth. 
The robustness of this model was tested with the Sobol 
method of global sensitivity analysis. The results indicate 
that the “a” parameter of the Gompertz function (i.e., 
the maximal tumor size) plays a crucial role in the mod-
el’s performance, and there are no evident interactions 
between parameters. For further details see supplemen-
tary material point 5.

Data analysis. Each scenario examined was repeated 
ten times, which means that every point of data used for 
further analysis is an average of ten simulation outcomes 
obtained at a given iteration step. The error bars shown 
on the plots relate to the standard deviations for these 
ten outcomes. In cases of a visual examination of pat-
tern formation (Figs. 1, 2, 7), the graphs result from a 
singular, exemplary simulation.

The code of mixed cancer culture was written in Py-
thon  3.7.3, and it was run on Anaconda 4.8.2 distribu-
tion on Mac Pro (late 2013) computer. For the fitting 
procedure, as well as the data analysis and visualization, 
the Origin Pro program was used. The source code of 
the mixed cancer culture model used to run experiments 
reported in this study is available at https://github.com/
complexitylab/mixedsizecancer.

RESULTS AND DISCUSSION

With the lattice size of 100k and standard GoL rules, 
the model was explored with different parameter set-
tings. First, the influence of the initial population size 
on the mixed culture was examined. Next, the role of 
the cell size in the model dynamics was investigated. 
By dynamics, we simply mean the changes in the can-
cer population over time. It applies both, to the overall 
population and to the transformations that happen with-
in particular cell lines. Further, the proliferation rate and 
different proportions of cancer lines in the initial popu-
lation were explored. Finally, the effect of overcrowding 
was analyzed.

The size of the initial population

In nature, cancer usually begins with a single cor-
rupted cell that takes the phenotype of an embryonic 
cell and the ability to proliferate, thus giving rise to 
the whole cancer population (Greaves & Maley, 2012). 
However, in laboratory, this process is almost never rep-
licated. In vitro or in vivo, experiments begin with the in-
ocula of thousands of cancer cells, the spheroid, or the 
tumor tissue slice. These means of cancer inoculation are 
used for practical reasons. They are easier to operate and 
more effective. Still, in the beginning, one introduces 
not a single cell, but an initial population of cancer cells. 
Therefore, the question is whether the size of that ini-
tial population matters? In order to determine the influ-
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ence of the size of the initial population on the model 
dynamics, four sets of simulations with 0.1k, 0.5k, 2.5k, 
and 12.5k initial populations were run. The output data 
were fitted to the Gompertz function. The results indi-
cate a non-linear relation between the model kinetics and 
the size of the initial population. For details, see supple-
mentary material point 6.

Next, the influence of the size of the initial population 
on the model “morphology” (i.e., the overall pattern cre-
ated by the mixed cancer cell population) was examined. 
Figure 1 shows the cell arrangement for simulations 
starting from 0.1k, 2.5k, and 12.5k cells. An interesting 
phenomenon was observed for the smallest size of the 
initial population (Fig. 1a). If the populations of Line1 
and Line2 start from 50 cells each, simulation tends to 
form a lobular pattern. This pattern seems to be com-
mon for the identical cell size model and the model 
where Line1 has bigger cells. In both cases, the lobular 
pattern emerges, although with some variations (Fig. 2). 
The simulation with identical cells forms a more con-
nected and consolidated pattern, whereas in the case of 
different cell sizes the lobular pattern is more detached 
and jagged. One can imagine these features as being eas-
ily utilized for cancer characteristics by rapidly develop-
ing computer vision analysis. The very dynamics of these 
patterns’ formation is better visualized in the supplement 

material video at https://ojs.ptbioch.edu.pl/index.php/
abp/ (part 3 and 4).

The cell size

The presented model exists in two versions. The first 
introduces the two lines of cells equal in size but with 
different other characteristics. The second operates on 
cell lines that also differ according to cell size. The fol-
lowing in silico experiment was performed in order to 
determine how the cell size affects such mixed cultures. 
The results are summarized in Fig. 3. The population 
of the bigger cells in mixed culture covers a larger area 
(Fig. 3a), yet it ends up with a lower number of cells 
(Fig. 3c). The opposite is true for the line with smaller 
cells. The smaller cells may occupy a minor part of the 
lattices, yet quickly outnumber the population of the 
bigger cells. This somehow surprising conclusion is not 
hard to explain. In the early steps of simulation, cells of 
both lines proliferate in an unobstructed way. However, 
as the lattice becomes filled, the bigger cells encounter 
increasing difficulties finding enough free place to rep-
licate. This is not an issue for the smaller cells. Even if 
Line1 is jam-packed and stops reproducing, the cells of 
Line2 can still find enough place to proliferate and fill 
the places between the bigger cells. Looking from the 
perspective of the mixed culture, presence of the bigger 

Figure 1. The disperse-lobular transition in tumor meshwork pattern. 
The figures capture the advanced stage of simulations that start from the initial population of the size of (a) 0.1k, (b) 2.5k, (c) 12.5k. 
These simulations are run for the mixed culture of different cell sizes. The bigger cells (Line1) are in red and the smaller ones (Line2) in 
blue. The cell number of Line1 and Line2 in the initial populations was equal. The figures show that the small size of the initial popula-
tion leads to lobular morphology.

Figure 2. The lobular meshwork pattern of mixed culture of: 
(a) identical, (b) different cell sizes. The cells of Line1 are in red, and these of Line2 in blue. Both simulations start from the initial popula-
tion of 2.5k and equal proportion of Line1:Line2. Regardless of whether there are differences in cell size between cell lines (b), or not (a), 
simulations create a lobular morphology of a mixed culture.

https://ojs.ptbioch.edu.pl/index.php/abp/
https://ojs.ptbioch.edu.pl/index.php/abp/
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cells respectively reduces the overall population of this 
culture expressed as the total cell number.

If the cell size has indeed such a great influence on 
the final population of the mixed culture, this should 
lead to interesting practical consequences. Firstly, not 
all niches are equally good for all kinds of cells. The 
smaller cells have the advantage of inhabiting the spac-
es (in 2D – the areas) unsuitable (due to the size) for 
the larger cells. Secondly, this outcome may somehow 
question today’s practice (Talkington & Durrett, 2015; 
Förnvik et al., 2016). Namely, in the case of the het-
erogeneous population (and most of the tumors should 
be considered as such), it turns out that it is not so 
easy to characterize cancer based on macroscopic tu-
mor size. According to our results, the bigger cells 
may occupy the larger area, yet their population can 
be low, whereas the clones of smaller cells in a rela-
tively cramped volume can outnumber the bigger cells. 

Therefore, not necessarily the most “visible” line is the 
most numerous one. Surprisingly, such an undervalued 
parameter as cell size may play a crucial role in cancer 
growth and propagation.

The proliferation rate of cell lines

Another parameter taken into consideration was the 
level of cellular proliferation. The model containing dif-
ferent cell sizes was tested with a set of proliferation 
rates. To expose the difference between lines, the prolif-
eration value of Line1 (red, bigger) was changed, where-
as the proliferation rate for Line2 (blue, smaller) stayed 
at 1. Other settings for both lines remained identical 
(100k lattice, standard GoL rules, and initial population 
of 2.5k equally distributed between Line1 and Line2).

The results (Fig. 4) allow one to draw the following 
conclusion: the higher the proliferation rate of the bigger 

Figure 3. The influence of cell size on simulation of the mixed population growth dynamics. 
The red squares represent the bigger cells of Line1, the blue circles the smaller cells of Line2. Panels display (a) the area occupied by 
mixed culture; (b) the occupied area versus the population size; (c) the population of mixed culture (total cell number). The overall con-
clusion is that the smaller cells in limited area proliferate in a higher number than the bigger ones.

Figure 4. The relation between proliferation rates and resultant mixed culture growth. 
The figures show (a) the population size (total number of cells) and (b) the area occupied by mixed culture with different proliferation 
rates of Line1 (the proliferation rate for Line2 stayed at 1). Higher proliferation rate of the bigger cells causes a decrease of mixed culture 
population and acceleration of lattice filling.
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cells, the smaller the total cell number of the final popu-
lation of mixed culture (Fig. 4a). Additionally, increasing 
the proliferation rate of Line1 results in accelerated lat-
tice filling (Fig. 4b).

The take-home message that the higher prolifera-
tion rate of one cancer cell line can actually reduce the 
overall cancer population is again counterintuitive. The 
lesson to be learned from this outcome is that the pro-
liferation rate should be considered in estimating the ag-
gressiveness of a heterogeneous tumor only in pair with 
the cell size. Further, an even more important message is 
that the highest proliferation of cancer clones does not 
translate automatically into the most numerous popula-
tion of the tumor.

The Line1:Line2 proportion in the initial population

One of the features that can be freely modified in 
the mixed culture model is the proportion of differ-
ent cells in the initial population. How this parameter 
influences the behavior of the model is shown in this 
paragraph. Seven different proportions of Line1:Line2 
were tested, and their impact on the model kinetics 
is presented in Fig. 5. A higher amount of the bigger 
cells in the initial population entails a reduction of the 
mixed culture population (expressed as the total num-
ber of cells) while, at the same time, it accelerates the 
growth of cancer with respect to the occupied area. A 
small derogation from the second rule is observed for 
an overcrowded lattice, which will be addressed in the 
next paragraph.

The presented outcome results described in the two 
preceding sections taken together allow one to conclude 
that the cell size along with the corresponding param-
eters that alter the proportion of different cell sizes in 
a mixed culture (e.g., the proliferation rate, the number 
and proportion of cell lines in the initial population) 
strongly affect the dynamics of a mixed culture. This 
determines the rate of cancer spread, how numerous its 
population is, and the contribution of particular cell lines 
in this process. This conclusion entitles one to empha-
size that the cell size is an important factor when analyz-
ing the growth and metastasis of heterogeneous cancer 
cell populations.

The effect of overcrowding

The last series of experiments were taken to determine 
the model behavior under overcrowded conditions. The 
collection of the data presented so far always stopped 
around 80% of the lattice filling. The experiments de-
scribed in the present section allowed simulations to run 
beyond this point and cover the maximum lattice area 
possible. The experiments were done under the stand-
ard and maximum growth rules of GoL with 100k lat-
tice and 2.5k size of the initial population. The results 
are shown in Fig. 6. As expected, at the lower level of 
lattice infilling, the simulation optimized for maximum 
cell growth outnumbered the population with the stand-
ard GoL rules. The situation changes as the lattice be-
comes overcrowded. At that point, the population of 
maximum growth reaches its upper limit and does not 
evolve anymore, whereas the population with standard 
GoL rules keeps growing (Fig. 6a). Further development 
of the standard population is due to the smaller cells 
that also keep reproducing under high-density conditions 
(Fig. 6b). The explanation of this fact lies in the adopted 
GoL rules. The maximum growth rules do not allow for 
cell death, so the simulation quickly progresses to oc-
cupy 100% of the area available and remains unchanged 
(Fig. 6c). In the case of the standard GoL rules, for each 
iteration, some cells die. As a result of that, the mixed 
culture never fully occupies the lattice, merely exceeding 
80% of the lattice infilling (Fig. 6c). The constant cycle 
of cell death and birth, in turn, initiates the alteration of 
the mixed culture population. The sites freed from the 
bigger cells are gradually taken up by the smaller ones. 
Similarly, the space that is still inhabited, yet due to its 
size unsuitable for the cells of Line1, becomes occupied 
by the smaller cells (Fig. 6d). These factors explain the 
continued growth in Line2 population even after the 
lattice fulfillment. It is worth mentioning that the main 
factor in the described process is cell death caused by 
overpopulation. Another cause of cell death, i.e., loneli-
ness, occurs very rarely and does not affect this simu-
lation significantly. Also note that the GoL rules apply 
only within the same cell line, so the neighbors from the 
other line do not count.

Additional confirmation for the process described 
above came from visual examination. Figure 7 shows the 

Figure 5. The growth of mixed culture with different initial Line1:Line2 proportions. 
The graph shows simulation of mixed culture growth with different (0:1, 1:3, 1:2, 1:1, 2:1, 3:1, 1:0) proportion of Line1 (bigger cells):Line2 
(smaller cells) in the inoculum. Figure displays (a) the growth curve of mixed culture; (b) the percentage of area filling. The results con-
firm that the higher the quantity of the bigger cell in the initial population, the smaller the number of cells in the final population of 
mixed culture and the faster the cancer growth in respect to its volume.
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Figure 6. Simulation under overcrowding conditions. 
The overgrowth of the mixed culture population for standard and maximum growth rules for (a) the overall population, (b) particular cell 
lines. The percentage of area occupied by mixed culture for (c) the overall population, (d) particular cell lines. The simulations run under 
standard GoL rules are visualized with dashed lines and under the maximum growth rules – with a solid line. The black lines represent 
the overall cell population, whereas the red lines with squares visualize the population of bigger cells (Line1) and the blue lines with 
circles – smaller cells (Line2). The figures show that the number of the smaller cells keeps growing, even after the lattice filling, and with 
them, the whole population increases.

Figure 7. Meshwork pattern of tumors in mixed culture under overcrowded conditions. 
Panels display (a) the standard GoL rules, simulation after 12 iterations; (b) the standard GoL rules, simulation in overcrowded conditions; 
(c) the rules of maximum growth. The figure shows evident pattern changes in an overcrowded environment for the standard GoL rules 
that allow for cell death (b) and maximum growth rules that exclude the necrotic effect (c).
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difference between overcrowded simulation under stand-
ard and maximum growth GoL rules. The standard rules 
that allow for constant population changes end up with 
a more homogeneous arrangement where the cells of 
Line1 and Line2 are evenly distributed (Fig. 7b). In con-
trast, the maximum cell growth rule forms a more segre-
gated pattern where the cells prefer the company of their 
kind over the mixed environment (Fig. 7c). The process 
of penetration of the area occupied by the bigger cells 
by the smaller ones is much better visualized by the vid-
eo submitted in the supplementary material (part 5).

The fact that under overcrowded conditions the 
mixed culture population undergoes systematic changes 
may have far-reaching consequences. Let us note first 
that the described situation is not unusual. The squeezed 
and tightly packed cells are the norm in a tumor, rather 
than an exception (Park et al., 2016). Secondly, necrotic 
cell death is a well-known process in every mature tumor 
(Karsch-Bluman et al., 2019). Thirdly, one can safely as-
sume that most of the tumors, due to clonal evolution, 
are heterogeneous, and some of them can develop phe-
notypic profiles of different cell sizes (Wu et al., 2015, 
Kiuru et al., 2018). Therefore, it is not unreasonable to 
suspect that the process described above can happen in 
real life. From a practical perspective, as an evolution of 
a heterogeneous tumor progresses, the pressure may oc-
cur in favor of the cancer clones with smaller cell sizes 
(Hannig et al., 2020). Such a tumor, even without sig-
nificant increments in magnitude, can still extend the 
size (numerical amount) of its population, and so may 
become increasingly aggressive (Asioli et al., 2014) and 
more metastatic.

“SWOT” analysis

One of the working goals of this paper is to put for-
wards the in silico model of growth of a population of 
cancer cells differing in size. As the factual results of 
particular simulations have been discussed in the previ-
ous sections, here we summarize them in the concise 
form of a “SWOT” (strengths, weaknesses, opportuni-
ties, threats) analysis.

Strengths

The tumor heterogeneity regarding the cell size is 
often the result of action of other factors creating the 
variability in size. By examining such a population, one 
cannot be sure that an effect is brought about by the 
size itself, or by the primary factors causing the size het-
erogeneity. Simultaneously simulating two lines differing 
in respect to the cell size, with the absence of any other 
factors, leads to some findings that otherwise would not 
be disclosed or would be lost in the details of complex 
models. Despite the model simplicity, a proper param-
eter setting allows it to imitate the cancer growth ac-
cording to the Gompertz function. Customization of the 
program is its next advantage. The model supports GoL 
rules modification with user-defined probability. The 
proliferation rate with the basic choice of two cell sizes 
in accordance with the other parameters are available for 
modification. Finally, the economic and ethical aspects 
of this model should be marked, saving time, money, 
preventing thousands of animals from testing in details 
numerous combinations of parameters so as to formu-
late the best one to test in vivo.

Weaknesses

The main strength of the model is, at the same time, 
its major weakness. As this model is very simplified, it 

lacks many features commonly occurring in other bio-
logically oriented CA models. In the mixed culture 
model, only the phenomena of cell death and mitosis 
are implemented, leaving behind the other important 
mechanisms affecting tumor growth. Alternative states 
of the cell cycle (like quiescent cells/resting cells state) 
are not introduced (Monteagudo & Santos, 2015), nor 
the immunology response (Alemani et al., 2012), nor the 
effects of the other, non-cancerous cells (fibroblasts) 
(Picco et al., 2017). The nutrients’ uptakes (Bunimovich-
Mendrazitsky et al., 2015), cellular motility (Kumar et al., 
2016), adhesion, tissue pressure, cellular metabolism (As-
colani & Liò, 2019), chemotaxis and hypotaxis (Tzedakis 
et al., 2015), tissue vascularity (Wcisło et al., 2009), and 
other factors are also omitted. However, what causes the 
greatest uncertainty is the lack of the experimental data 
that could support our findings.

Opportunities

The results presented in this paper open up some in-
teresting opportunities. For example, the histological pat-
terns of cancer growth can be used to quantify the initial 
metastatic population or to distinguish cell lines in the 
tumor. The findings may also influence the tumor diag-
nosis, forcing it to reconsider the cell size as an impor-
tant factor in estimation of cancer aggressiveness (Kiuru 
et al., 2018). The temporary custom of expressing tu-
mor growth by increasing its macroscopic size (volume) 
seems to be not valid anymore as the tumor cells may 
still proliferate without increasing the tumor size, which 
has been proven in the above simulations. Besides that, 
the model can be further explored with different sets 
of GoL rules, additional parameters, and new variables. 
Also, the other functions of cancer growth (than those 
given by Gompertz) may be tested and the additional 
determinants associated with the intercellular contact as 
well as the cell motility could be introduced into the 
model (see Matsiaka et al., 2019; Malik et al., 2020). Fur-
ther development of the model could allow for more va-
riety in choosing the cell size, as well as for introducing 
additional cell lines to a heterogeneous tumor. Empirical 
data confirm that heterogeneous tumors indeed consist 
of various cells (Al-Brahim & Salama, 2005; Gerlinger et 
al., 2012; Stanta & Bonin, 2018), and that the cell size is 
important in cancer growth and propagation (Grichnik 
et al., 2006; Rosai, 2011; Lyons et al., 2016). Our model 
can help to explain that the cell size, in addition to other 
e.g., mechanical parameters (Sarna et al., 2018), may give 
the answer. Finally, the model may be useful for clinical 
application primarily as an aid in data interpretation and 
for ruling out some research hypotheses.

Threats

Concerning the threats assessment for application of 
this model, there is a temptation to substitute the in 
vivo experiments with cheaper and less ethically dubi-
ous in silico experiments. This is a risky road (Mitchell, 
2019), for which we are not, and perhaps never will be 
ready. This is why the authors emphasize the need for 
the wet lab experiments accompanying this study and are 
engaged in carrying them. The present model may only 
suggest some solutions or hypotheses otherwise difficult 
to establish.

CONCLUSIONS

In this paper, we presented a 2D cellular automata 
model of a mixed cell culture. The model introduces two 
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separate cancer cell lines that can differ in respect of 
cell size. The following main findings can be mentioned: 
a) small initial population of mixed cancer cells entails 
lobular pattern formation, b) the cell size plays a crucial 
role in cancer growth and propagation, c) the bigger cell 
size and the higher the number of the bigger cells (i.e., 
the higher proliferation rate of these cells and the larger 
their number in the initial population of cancer line), the 
smaller the final population of the mixed culture, d) in-
creasing the number of cells not necessarily comes at 
the cost of the expansion of space occupied by them, 
consequently – lack of increase in the macroscopic size 
of a tumor does not mean lack of cell proliferation, e) 
the smaller cells seem to have an advantage under over-
crowded conditions.

Naturally, all indications and suggestions included 
in this paper are based on in silico experiments and the 
simplified model. However, the results suggest a certain 
hypothesis of tumor growth that may be useful for ex-
plaining the outcome of some in vivo experiments and 
clinical data. The development and verification of theo-
ries proposed in this work may, as a consequence, lead 
to specific therapeutic measures. Therefore, the mixed 
cancer culture model can be a valuable tool for research-
ers, offering a promising direction for further studies 
and encouraging them to re-examine the existing data 
from the new perspective.
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