Table S1. Crystallization conditions of lactoglobulin mutants.

| Mutant | Crystallization conditions                                                                             |
|--------|--------------------------------------------------------------------------------------------------------|
| L39K   | drop: 2 µl of protein 26 mg/ml, 1 µl 3.0 M ammonium sulfate in 0.5 M Tris-HCl pH 8.5, 0.5 µl 10 mM TET |
|        | well: 500 µl of 3.0 M ammonium sulfate in 0.5 M Tris-HCl pH 8.5                                        |
| L39Y   | drop: 2 µl of protein 24 mg/ml, 1 µl 2.2 M ammonium sulfate in 0.5 M Tris-HCl pH 7.1, 0.5 µl 10 mM TET |
|        | well: 500 µl 2.2 M ammonium sulfate in 0.5 M Tris-HCl pH 7.1                                           |
| I56F   | drop: 2 µl of protein 12 mg/ml, 1 µl 2.4 M ammonium sulfate in 0.5 M Tris-HCl pH 8.0, 0.5 µl 10 mM TET |
|        | well: 500 µl 2.4 M ammonium sulfate in 0.5 M Tris-HCl pH 8.0                                           |
| L58F   | drop: 2 µl of protein 10 mg/ml, 1 µl 2.8 M ammonium sulfate in 0.5 M Tris-HCl pH 8.0, 0.5 µl 10 mM TET |
|        | well: 500 µl 2.8 M ammonium sulfate in 0.5 M Tris-HCl pH 8.0                                           |
| F105A  | drop: 2 µl of protein 22 mg/ml, 1 µl 2.6 M ammonium sulfate in 0.5 M Tris-HCl pH 8.5, 0.5 µl 10 mM TET |
|        | well: 500 µl 2.6 M ammonium sulfate in 0.5 M Tris-HCl pH 8.5                                           |
| F105L  | drop: 2 µl of protein 23 mg/ml, 1 µl 2.4 M ammonium sulfate in 0.5 M Tris-HCl pH 8.0, 0.5 µl 10 mM TET |
|        | well: 500 µl of 3.0 M ammonium sulfate in 0.5 M Tris-HCl pH 8.0                                        |
| M107L  | drop: 3 µl protein 27 mg/ml, 1 µl 1.34 M tri-sodium citrate in 0.5 Tris-HCl pH 8.0, 0.5 µl 10 mM TET   |
|        | well: 300 µl of 1.34 M tri-sodium citrate in 0.5 M Tris pH 8.0                                         |

| Mutant                                       | L39K                              | L39Y                              | 156F                | L58F                        | F105L          | F105A                             | M107L          |  |  |  |  |  |
|----------------------------------------------|-----------------------------------|-----------------------------------|---------------------|-----------------------------|----------------|-----------------------------------|----------------|--|--|--|--|--|
| PDB ID                                       | 7BGZ                              | 7BH0                              | 7BF8                | 7BF7                        | 7BGX           | 7BGA                              | 7BF9           |  |  |  |  |  |
| TET present in the β-barrel?                 | NO/(fatty acid <sup>endo</sup> )* | NO/(fatty acid <sup>endo</sup> )* | NO/(surface site)** | YES                         | NO             | NO/(fatty acid <sup>endo</sup> )* | YES            |  |  |  |  |  |
| Data processing                              |                                   |                                   |                     |                             |                |                                   |                |  |  |  |  |  |
| Space group                                  | P3221                             | P3221                             | P212121             | P3221                       | P3221          | P3221                             | P3221          |  |  |  |  |  |
| Unit cell parameters                         | 53.56, 53.56,                     | 53.27, 53.27,                     | 53.83, 69.66,       | 53.34, 53.34, 52.79, 52.79, |                | 53.34, 53.34,                     | 53.02, 53.02,  |  |  |  |  |  |
| a, b, c [Å]                                  | 110.88                            | 109.89                            | 79.24               | 111.87 108.82               |                | 112.31                            | 111.56         |  |  |  |  |  |
| Resolution limits [Å]                        | 14.26 - 2.40                      | 13.47 - 2.10                      | 14.62 - 1.80        | 13.77 - 2.10                | 19.65 - 2.00   | 15.40 - 1.90                      | 14.73 - 1.80   |  |  |  |  |  |
| (last shell)                                 | (2.49 - 2.40)                     | (2.16 - 2.10)                     | (1.84 - 1.80)       | (2.17 - 2.10)               | (2.05 - 2.00)  | (1.95 - 1.90)                     | (1.84 - 1.80)  |  |  |  |  |  |
| No. of reflections                           | 26 085 (1 866)                    | 29 075 (1 819)                    | 152 301 (6 789)     | 29 028 (1 691)              | 40 044 (2 350) | 40 802 (2 162)                    | 44 886 (1 989) |  |  |  |  |  |
| No. of uniques                               | 7 446 (754)                       | 11 001 (862)                      | 28 251 (1 650)      | 11 130 (982)                | 12 244 (910)   | 15 168 (1 025)                    | 17 194 (1 019) |  |  |  |  |  |
| Multiplicity                                 | 3.5 (2.5)                         | 2.7 (2.1)                         | 5.4 (4.1)           | 2.6 (2.0) 3.3 (2.6)         |                | 2.7 (2.1)                         | 2.6 (2.0)      |  |  |  |  |  |
| Ι/σΙ                                         | 12.9 (1.4)                        | 7.7 (2.0)                         | 12.3 (1.5)          | 7.9 (1.6) 11.0 (1.7)        |                | 12.0 (1.4)                        | 13.8 (2.2)     |  |  |  |  |  |
| R merge [%]                                  | 0.057 (0.653)                     | 0.058 (0.223)                     | 0.108 (0.812)       | 0.061 (0.285) 0.055 (0.637) |                | 0.067 (0.492)                     | 0.035 (0.428)  |  |  |  |  |  |
| Completeness [%]                             | 98.1 (97.6)                       | 99.4 (98.5)                       | 99.8 (100)          | 98.8 (96.4) 98.8 (99.3)     |                | 99.7 (99.8)                       | 99.0 (99.9)    |  |  |  |  |  |
| CC(1/2)                                      | 0.998 (0.714)                     | 0.998 (0.884)                     | 0.996 (0.701)       | 0.997 (0.805) 0.999 (0.465) |                | 0.997 (0.677)                     | 0.999 (0.351)  |  |  |  |  |  |
| Mosaicity [°]                                | 1.07                              | 1.30                              | 0.94                | 1.25                        | 0.93           | 1.02                              | 0.99           |  |  |  |  |  |
| Structure refinement                         |                                   |                                   |                     |                             |                |                                   |                |  |  |  |  |  |
| No. reflections (test)                       | 6 362 (1 075)                     | 9 915 (1 066)                     | 27 180 (1 032)      | 10 058 (1 049)              | 11 123 (1 088) | 14 091 (1 036)                    | 16 136 (1 054) |  |  |  |  |  |
| R/R <sub>free</sub> [%]                      | 19.4/26.6                         | 20.0/27.5                         | 19.2/22.1           | 20.3/24.9                   | 20.0/24.6      | 18.5/24.3                         | 18.4/22.3      |  |  |  |  |  |
| Rmsd bonds [Å]/angles [°]                    | 0.011/1.779                       | 0.010/1.686                       | 0.011/1.606         | 0.010/1.722                 | 0.012/1.836    | 0.011/1.638                       | 0.011/1.602    |  |  |  |  |  |
| Ramachandran (%)<br>favored/allowed/outliers | 94/6/0                            | 94/6/0                            | 98/2/0              | 95/5/0                      | 97/3/0         | 95/4/1                            | 97/3/0         |  |  |  |  |  |

 Table S2. Statistics of data collection and structure refinement.

\* fatty  $acid^{endo}-$  endogenous fatty acid trapped in the  $\beta\text{-barrel}$ 

\*\* TET found on protein surface, not in the  $\beta$ -barrel

Table S3. Classification of new BLG variants according to shape of the binding pocket and ability to interact with fatty acids and tetracaine.

| shape of the binding pocket              |        | elo    | reduced |      |       |      |       |
|------------------------------------------|--------|--------|---------|------|-------|------|-------|
| Mutant:                                  | L39K   | L39Y   | F105A*  | L58F | M107F | 156F | F105L |
| β-barrel available for external ligand?  | no     | no     | no      | yes  | yes   | yes  | yes   |
| binds fatty acid in the $\beta$ -barrel? | endo** | endo** | endo**  | yes  | yes   | no   | yes   |
| binds tetracaine in the $\beta$ -barrel? | -      | -      | -       | yes  | yes   | no   | no    |
| binds tetracaine on the surface?         | no     | no     | no      | no   | no    | yes  | no    |

\*shape can be classified as elongated; however, it is slightly enlarged in the region of F105A substitution

\*\*endo –  $\beta$ -barrel blocked by endogenous fatty acid, not available for tested ligands



**Fig. S1.** Far-UV (left panel) and near-UV (right panel) CD spectra of F105A and L39K variants in 50 mM phosphate buffer pH 6.5 at room temperature. Spectrum of WT comes from (Loch et al., 2016).



**Fig. S2.** The binding pocket shape and conformation of fatty acid (LAU – lauric acid, MYR – myristic acid) bound in the  $\beta$ -barrel of variant (A) F105A, (B) natural protein (PDB ID: 3UEU) and (C) F105L (PDB ID: 6RWQ). (D) Superposition of fatty acid molecules bound to F105A (green), F105L (pink) and natural (orange). 2FoFc map is contoured at 1.00 $\sigma$  level.



**Fig.S3.** Crystal structures of BLG mutants co-crystallized with tetracaine but not containing tetracaine. (A) Mutant L39Y with endogenous lauric acid bound in the  $\beta$ -barrel. (B) Mutant L39K with endogenous decanoic acid bound in the  $\beta$ -barrel. (C) Mutant F105L with cryoprotectant molecules (glycerol) bound in the modified  $\beta$ -barrel. 2FoFc map are contoured at 1.00 $\sigma$  level.



Fig. S4. Omit maps at 3.00  $\sigma$  level confirming presence of tetracaine molecules in the structures of mutants (A) I56F, (B) L58F and (C) M107L.



**Fig. S5.** Superposition of WT dimer (green, PDB ID: 6QI6) and I56F dimer (pink). Atomic shifts are visible especially in the region of the ligand binding (A) but also for the entire dimer molecule (B). Cα superposition was performed using program *LSQKAB* form the *CCP4* package.