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Abdominal aortic aneurysm is a process involving the 
disruption and reconstruction of the extracellular ma-
trix and the apoptosis of smooth muscle cells under the 
strong influence of the immune system. Thrombospon-
dins are proteins that influence a wide range of cell-
matrix interactions. While THBS1 and THBS2 are widely 
studied, the effects of THBS3 on extracellular matrix and 
vascular cells are poorly understood. Additionally, it is 
not known whether expression of these genes’ changes 
along the aneurysm tissue. Here we analyzed the ex-
pression of THBSs mRNA isolated from the harvested tis-
sues along the aneurysm divided into three zones based 
on their morphology. Total mRNA was isolated from 13 
male patients undergoing scheduled open aortic repair, 
with each aneurysm divided into a proximal part, an 
aneurysm bag, and a distal part with border tissue as 
a control. Two step real-time PCR analysis with random 
hexamers was performed, which allowed the detec-
tion of significantly increased expression of all analyzed 
thrombospondins, especially THBS3, at the control tissue. 
Overexpression of THBSs may have a destabilizing effect 
on the structure of the extracellular matrix by affecting 
both the matrix producing cells and by inhibiting the ac-
tivity of matrix proteins.
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INTRODUCTION

Abdominal aortic aneurysm (AAA) is a heterogeneous 
asymptomatic disease which, if not detected, can lead to 
death from aortic rupture (Keisler & Carter, 2015; Saka-
lihasan et al., 2005). Aortic dilation results from persis-
tent inflammation (Liu et al., 2015a; MA3RS Study Inves-
tigators 2017; Sawyer et al., 2016), associated with death 
of endothelial (EC) and smooth muscle cells (SMC) 
(Kokot et al., 2013; Siasos et al., 2015) and abnormal re-

modeling of the extracellular matrix (ECM) (Quintana & 
Taylor, 2019; Didangelos et al., 2011; Kadoglou & Liapis, 
2004). An increased risk of developing AAA is strongly 
correlated with gender, age, smoking, family history of 
AAA, atherosclerotic diseases, spinal cord injury, and ge-
netic predispositions (Sakalihasan et al., 2005; Lederle et 
al., 2000; Li et al., 2013). In the overall European popula-
tion, the prevalence in 2011–2013 was 4.3%, with 80% 
mortality resulting from AAA rupture (Li et al., 2013). In 
the Polish population aged over 65 years, the incidence 
of AAA is 2.62% and almost 4 times higher in men 
(4.32%) than in women (1.23%) (Mikołajczyk-Stecyna et 
al., 2013; Tkaczyk et al., 2019).

Thrombospondins (THBSs) seem to be important in-
hibitors of AAA, keeping the growth of the aneurysm 
under control. Thrombospondins are classified in the 
family of secreted glycoproteins that have very com-
plex and often opposite biological functions. They con-
tain domains for interacting with cell surfaces, growth 
factors, cytokines, and ECM components (Adams & 
Lawler, 2011). Trimeric A subfamily consists of THBS1 
and THBS2 and has been studied in AAA, pentameric 
THBS3 is less studied, and its function and importance 
in angiogenesis and vascularization are poorly under-
stood (Stenina-Adognravi, 2013).

Thrombospondin 1 was shown to be involved in the 
maintenance of vascular structure by affecting cell prolif-
eration, apoptosis, and adhesion (Liu et al., 2015b). Nu-
merous studies revealed the involvement of THBS1 in 
the development of AAA through acceleration of vascu-
lar inflammation, activation of TGF-beta, and activation 
of the cofilin pathway (Jana et al., 2020; Liu et al., 2015b; 
Krishna et al., 2015; Adams & Lawler, 2011; Resovi et 
al., 2014; Crawford et al., 1998; Yamashiro et al., 2018). 
THBS1 is also one of the proteins involved in the “an-
giogenic switch” that changes the phenotype of endothe-
lial cells from quiescent to sprouting (Lawler & Lawler, 
2011). THBS2 cooperates with THBS1 for most of its 
functions (Lawler & Lawler, 2011). THBS2 plays an im-
portant role in the structural and functional heart integ-
rity (Golledge et al., 2013a). THBS3 promotes sarcolem-
mal destabilization by reducing integrin function (Schips 
et al., 2019). Overexpression of THBS3 in the heart of 
mice uniformly inhibits the expression of integrins α4, 5, 
6, 7, 8, 9, 10, and β1D, which leads to the rupture of the 
cell membrane. The lack of THBS3 expression protects 
the heart from pressure overload (Schips et al., 2019).

In presented study, we aimed at detection of the ex-
pression pattern of thrombospondins along the AAA us-
ing the border segment of aneurysm as a control (Ziaja, 
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2013; Legaki et al., 2020). Bearing in mind that AAA is a 
multifactorial and heterogeneous disease with great vari-
ability between patients, it is difficult to select the ideal 
control group to compare expression levels. Therefore, 
the best way to achieve it was to compare the affected 
tissue with the phenotypically healthy tissue excised next 
to the abdominal aortic aneurysm.

MATERIALS AND METHODS

Patient characteristics

A total of 13 samples from males were collected fol-
lowing AAA surgery from patients who were scheduled 
for open aortic repair (OAR). The patients who un-
derwent surgery for AAA included in this study were 
male and ranged in age from 57 to 82 years old (mean 
67.15±6.47 years) (Supplementary Table I at https://
ojs.ptbioch.edu.pl/index.php/abp/). The AAA patients 
excluded from the study were those who fulfilled the 
following criteria: (a) chronic obstructive pulmonary dis-
ease (COPD); (b) diabetes; (c) creatinine level >1.0; (d) 
reconstruction of coronary vessels and thoracic aorta 
(CABG); (e) reconstruction of carotid artery (ICA); (f) 
diagnosed generalized atherosclerosis (AO); (g) family 
history of AAA or inherited cardiovascular syndromes; 
and (h) lack of ability to provide informed consent for 
surgical treatment.

The study plan was approved by the Bioethics Com-
mittee of the Medical University of Silesia in Kato-
wice, no. KNW/0022/KB1/55/14 issued on June 
17th, 2014, and its further extension no. KNW/0022/
KB1/55/1/14/17 issued on June 27th, 2017.

Materials

Fragments of AAA, on average 50 mm in diameter, 
were collected from the patients upon surgery. When 
technically feasible, non-aneurysmal aortic samples of 
the aneurysm neck (unaffected samples, as confirmed by 
pathologists) were simultaneously collected and used as 
controls (Fig. 1).

All surgical procedures were performed in the planned 
mode. Briefly, the material collected for the research was 
part of the aneurysm excised during an OAR (ICD9 - 
38.424). The samples were collected intra-surgically at 
the General and Vascular Surgery Department in Ka-
towice-Ochojec, Poland, and secured immediately in 

the surgery room, at the room temperature and placed 
in sterile 50 mL tubes filled with 25 mL of high glu-
cose (4.5 mg/mL) Dulbecco’s modified Eagle’s medium 
(Gibco, Grand Island, NY, USA) supplemented with 
penicillin (10 000 U/ml), streptomycin (10 mg/ml), and 
amphotericin B (25 µg/ml) (PAA Laboratories, Pasching, 
Austria). The described procedures ensured the main-
tenance of alive cells, thus, prevent RNA degradation. 
Then, upon arrival at the cell culture facility, aneurysmal 
tissue was divided into 4 fragments: border and control/
border (C); neck – upper/proximal (1); aneurysm bag or 
middle/central (2); and the end segment – bottom/dis-
tal region (3), where the second part was the aneurysm 
sack of the excised AAA (Ziaja, 2013). The most altered 
portion of tissue was called the “aneurysm sac,” and the 
surrounding tissue were marked as proximal and distal 
parts. The method of tissue fragmentation was based on 
the research of Ziaja (Ziaja, 2013). The control tissue 
was marked as control by the surgeon performing the 
surgery, from this part, histological examinations were 
performed to confirm removal of the aneurysm in its 
entirety by the method of margin analysis (Legaki, 2020). 
From the fragments, specimens of ~4 mm × 4 mm × 
2–4 mm were immediately subjected to RNA isolation 
and purification (Fig. 1).

Methods

Total RNA was isolated in duplicate using Zymogen 
Quick RNA Mini Prep (Ambion, Austin, Texas, USA) 
following sample homogenization in TissueLyser II (Qia-
gen, Venlo, The Netherlands). Quality and quantity eval-
uation was performed using NanoDrop 2000 spectro-
photometer (Thermo Fisher Scientific, Waltham, Massa-
chusetts, U.S.A.). Total RNA (1 to 2 µg) was transcribed 
using a cDNA Transcriptor First Strand cDNA Synthe-
sis Kit (Roche, Penzberg, Upper Bavaria, Germany) with 
random hexamers. Expression analyses with Real Time 
Custom Panel 384-96 (config. no 100131839; Roche) and 
LightCycler 480 Probe Master (Roche, Penzberg, Upper 
Bavaria, Germany) were performed using a LightCycler 
480 II (Roche, Penzberg, Upper Bavaria, Germany). The 
genes analyzed in this report are listed in Table 1.

Gene expression profiling

Gene expression was analyzed using GenEx ver6 
software (MultiD Analyses AB; Sweden). Analyses were 
performed using the Ct(2-ΔΔCt) comparative method as fol-
lows: raw data were normalized to sample amount fol-

Figure 1. Abdominal aortic aneurysm collected during an open aortic repair (OAR) schematically showing the plan of partitioning of 
the tissue. 
From each segment, pieces of ~4 mm x 4 mm x 2–4 mm were subjected immediately to RNA isolation and purification (boxed).
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lowed by normalization to the reference genes GAPDH, 
GusB, PPIA, and RPL13a (Table 1). Relative expres-
sion of target genes was calculated with the comparison 
against the control/border samples.

Statistical analyses

The Kolmogorov–Smirnov test was employed to de-
termine if the data from the expression analysis showed 
a normal distribution. As the data were not normally 
distributed, a nonparametric test (Mann-Whitney 1-tailed 
test) was used for analysis of the data (Weissgerber et al., 
2015). The threshold for the p-value was set to less than 
0.05. For the determination of the differential expression 
of genes, scatter plot analysis was used with a signifi-
cance area equal to 1. Spearman correlation coefficients 
(rS) were calculated to determine the correlation between 
genes.

RESULTS AND DISCUSSION

The expression of all analyzed genes in majority sam-
ples from all sections of the aneurysm as well as from 
the border section were detected at mRNA level. Only 
one proximal sample revealed negative results (Supple-
mentary Table II at https://ojs.ptbioch.edu.pl/index.
php/abp/).

To the best of our knowledge, this is the first report 
on THBS1, THBS2, and THBS3 expression in human 
samples along the aneurysm tissue and its border at the 
mRNA level. On the basis of the relative expression of 
the samples, we observed that the expression of throm-
bospondins mRNA is different in the same patient in 
all four sections of the aneurysm analyzed, but unfor-
tunately too few samples (7 patients with all sections) 
did not allow statistical results to be obtained, and so we 
could only observe the trends (Supplementary Fig. I at 
https://ojs.ptbioch.edu.pl/index.php/abp/).

When combined, significant differences between ex-
pression of the three thrombospondins in different parts 
of surgically removed aneurysm were found (Fig. 2, Ta-
ble 2). Previous reports from animal models revealed 
that THBS1 overexpression in a mouse model of AAA 
largely contributed to its development by inhibiting the 
expression of TIMP1 (tissue inhibitor of metalloprotein-
ase 1), which allows inflammatory macrophages to infil-
trate vascular tissues. Moreover, mice without THBS1 

Table 1. Alphabetical list of genes used in the study with appropriate Assay IDs (Roche) and HGNC symbols.

Assay ID Gene Symbol Description

141139 GAPDH glyceraldehyde-3-phosphate dehydrogenase [HGNC:4141; Gene ID:2597]; Forward primer sequence: AGC-
CACATCGCTCAGACAC; Reverse primer sequence: GCCCAATACGACCAAATCC; UPL Probe number: 60

144221 GUSB glucuronidase, beta [HGNC:4696; Gene ID:2990]; Forward primer sequence: TCGCCATCAACAACACACTC; 
Reverse primer sequence: TCTGGACAAAGTAACCCTTGG; UPL Probe number: 77

102088 PPIA
peptidylprolyl isomerase A (cyclophilin A) [HGNC:9253; Gene ID:5478]; Forward primer sequence: 
TTCATCTGCACTGCCAAGAC; Reverse primer sequence: CACTTTGCCAAACACCACAT; UPL Probe number: 
158

102119 RPL13A small nucleolar RNA, C/D box 32A [HGNC:10159; Gene ID:26819]; Forward primer sequence: CTGGAC-
CGTCTCAAGGTGTT; Reverse primer sequence: GCCCCAGATAGGCAAACTT; UPL Probe number: 157

104740 THBS1 thrombospondin 1 [HGNC:11785; Gene ID:7057]; Forward primer sequence: GCTGCACTGAGTGT-
CACTGTC; Reverse primer sequence: TCAGGAACTGTGGCATTGG; UPL Probe number: 43

104742 THBS2 thrombospondin 2 [HGNC:11786; Gene ID:7058]; Forward primer sequence: AGCGTCAGATGTGCAACA-
AG; Reverse primer sequence: GGAAGCAGGGGTTGGATAA; UPL Probe number: 158

112464 THBS3 thrombospondin 3 [HGNC:11787; Gene ID:7059]; Forward primer sequence: TGAGCAATCCTACCCAGA-
CA; Reverse primer sequence: TTGTCCTTGGTGTCCTGATG; UPL Probe number: 112

Figure 2. Relative expression of thrombospondins.
The Y axis represents the relative expression 
Nrel=2^(ΔCnormalizedtarget-ΔCcontrol), and the X axis repre-
sents the expression of genes in the control, proximal, aneurysm 
sack and distal segments. *Mann-Whitney test, 1-tailed p<0.05; 
**Mann-Whitney test, 1-tailed p<0.005
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did not reduce the levels of Mmp9, Mmp3, Mmp10, and 
Mmp12 (Yang et al., 2020). In our work, the highest ex-
pression of THBS1 was found in the border tissue and 
the difference between the border part and the next 
proximal part was significant. There was also a signifi-
cant increase in mRNA expression in the aneurysm sac 
compared with the proximal segment. The same relation 
was detected between the proximal and distal segments. 
However, THBS1 expression in the affected segments 
did not reach levels of that found in control tissues 
(Supplementary Fig. II at https://ojs.ptbioch.edu.pl/in-
dex.php/abp/). High levels of THBS expression in the 
control tissue could mark an extensive inflammation in 
these tissues, which may contribute to AAA develop-
ment.

In the mouse model, 70% of THBS1 was expressed 
by macrophages, which mainly invade the adventitious 
layer (composed of endothelial cells) (Liu et al., 2015a; 
Yang et al., 2020). Therefore, the conclusion could be 
made that in an already developed aneurysm, the highest 
macrophage infiltration occurs not in the tissue already 
phenotypically changed but in the tissue that is still con-
sidered as healthy.

The highest change fold ratio between border tissue 
and the proximal part was for the THBS2 (4.89±0.003) 
(Table 2). The expression pattern was similar to that 
of THBS1. This result was not surprising as in numer-
ous studies these proteins showed a similar function 
under physiological and pathological conditions (Lawl-
er & Lawler; Zhang et al., 2009; Colombo et al., 2010; 
Yamauchi et al., 2007; Oganesian et al., 2008; Dawson et 
al., 1997; Jiménez et al., 2000; Sun et al., 2009). Addition-
ally, in the correlation analysis using the Spearman cor-
relation coefficient, strong positive correlations between 
THBS2 and THBS1 (rS=0.76 ±0) and between THBS2 
and THBS3 (rS=0.74 ±0) were found. The analysis in 
silico of gene expression omnibus set (GEO) (Wan et 
al., 2018) revealed enrichment of differentially expressed 
genes (DEG) for THBS2 in human abdominal aneu-
rysm, but not as a potential biomarker or candidate gene 
for drug therapy. In 2007 only dataset addressing AAA 
– GDS2838 (http://www.ncbi.nlm.nih. gov/geo/) was 
published, but based on the information of its profiles 
for THBS1, THBS2 and THBS3 there is no final conclu-
sion as to theirs rank, they are too heterogenous. Most 
researchers either take a sample of the AAA center or 
extract mRNA from the entire aneurysm and compare it 
with samples taken from a “healthy” aorta during anoth-
er procedure or after death. We propose a different ap-
proach, similar to that used in the analysis of cancer tis-
sues. Thus, the affected tissues are similarly divided with 
the marginal/border tissue treated as a control sample, 
thus eliminating individual differences between samples 
collected from different individuals and focusing only on 

the differences between different sections of the aneu-
rysm. As shown in the results, these differences are uni-
versal and are not due to individual differences.

Recently, first reports of increased expression levels of 
THBS2 have been described in protein studies in human 
AAA tissue samples, (Qi et al., 2020). Elevated THBS2 
concentration in serum plasma was associated with the 
risk of cardiac mortality in patients with AAA (Golledge 
et al., 2013b) and aortic dissection (AD) (Qi et al., 2020). 
Furthermore, its polymorphism was linked to hyperten-
sion susceptibility (Yamada, 2009). THBS2 protein was 
detected in smooth muscle cells and at a lower level 
in endothelial cells where it positively correlated with 
TNF-α and IL-6 suggesting that THBS2 may regulate 
the inflammatory response (Qi et al., 2020). THBS2 also 
reduced the presence of active MMP2. THBS2-deficient 
mouse fibroblasts have been reported to produce pro-
MMP2 twice compared with wild-type cells (Yang et al., 
2000).

Here, too, we present the analysis of THBS3 ex-
pression in human AAA for the first time. There was 
a significant expression decrease between the border 
tissue and the proximal part of the aneurysm (change 
fold=4.01±0.02) and between the proximal part and the 
aneurysm sac (change fold=1.2±0.02). Additionally, a 
strong positive correlation of expression was found be-
tween THBS3 and THBS1 (rS=0.76 ±0), and between 
THBS3 and THBS2 (rS=0.74 ±0). THBS3 is the least 
known member of the thrombospondin family. Particu-
larly, its function in AAA is poorly understood. In an 
aging mouse model THBS3 expression was increased in 
the myocardial ECM of elder mice, which may lead to 
Smad2 activation in epithelial cells and age-related cardiac 
inflammation (Toba et al., 2016). In contrast, the expres-
sion level of THBS3 was not associated with pulmonary 
arterial hypertension (PAH), although THBS1 was di-
rectly involved in the activation of TGF-β in the mouse 
PAH model and was both required and sufficient for the 
development of PAH (Kumar et al., 2017). In osteosar-
comas, THBS3 expression is correlated as a prognostic 
factor of worse overall survival and as a stimulator of 
tumor progression due to its high ability to promote an-
giogenesis (Dalla-Torre et al., 2006). Multi-omics analysis 
of vascular calcification also highlighted the unknown 
role of THBS3 in this process, possibly by imposing sar-
colemmal instability (Qian et al., 2021; Schips et al., 2019). 
Overexpression of THBS3 is the result of a response to 
an inflammatory process. Improved remodeling, expan-
sion, and fibrosis of the ventricles in experimental mice 
was a result of inhibition of integrin expression, which 
led to rupture of the cell membrane (Schips et al., 2019).

Vascular smooth muscle cells, which are an essential 
component of the aorta (they constitute >90% cells in 
there) during AAA development, undergo excessive ap-

Table 2. Fold change of expression between segments of the AAA from the results of scatter plot evaluation.

Gene

Fold change (FD – fold decrease; FI – fold increase)

Proximal part Aneurysm bag Distal part Aneurysm bag vs. 
proximal part

Distal part vs. 
proximal part

Distal part vs.  
Aneurysm bag

versus border tissue

THBS1 ↓ 3.4* FD ↓ 2.5 FD 1.3 FD  1.4** FI ↑ 2.5* FI 1.9 FD

THBS2 ↓ 4.8* FD ↓ 3.6 FD 1.9 FD  1.3* FI ↑ 2.5 FI  1.9 FI

THBS3 ↓ 4.0* FD ↓ 3.3 FD 1.8 FD  1.2* FI ↑ 2.2 FI  1.8 FD

↓decreased expression according to the scatter plot correlation; ↑increased expression according to the scatter plot correlation; *Mann-Whitney 
test, 1-tailed p<0.05; **Mann-Whitney test, 1-tailed p<0.005
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optosis followed by destruction of the dynamic balance 
of ECM (Quintana & Taylor, 2019). THBS1 and 2 en-
hance apoptosis by promoting the expression of inflam-
matory factors and activating apoptotic pathways, as well 
as by inhibiting angiogenesis (Armstrong & Bornstein, 
2003; Lawler, 2000). Since they play a protective role for 
healthy tissue under severe macrophage attack at the on-
set of inflammation in the aorta, thrombospondins re-
spond by eliminating the potential source of inflamma-
tion. In chronic conditions, their overexpression leads 
to disruption of homeostasis in the ECM and then to 
a positive feedback loop when overexpression of MMPs 
and its inhibitors, remodel the matrix. In addition, the 
hemodynamic load pressure contributes to further im-
balance, and with THBS3 overexpression, it additionally 
disturbs the stability and the presence of integrins on the 
cell membrane.

CONCLUSION

We found that there was a significantly variable expres-
sion pattern in the aneurysm tissue taking into account 
the segmentation of the AAA. The most prominent 
feature found was the sudden increase in expression in 
the marginal tissue compared to the aneurysm segments. 
Based on our and previous studies, we hypothesize that 
THBS3 downregulates the expression of integrins, which 
can affect cell membranes and destabilize the complex 
junction of the ECM structure in the aortic vessel. The 
destabilization of the ECM and the connection of cells 
to it may lead to ease the access of THBS1-expressing 
macrophages to the ECM of the abdominal aorta. The 
further overexpression of THBS1 might induce structural 
changes in the ECM by, for example, inhibition of the 
TIMP1 at protein level, while overexpression of THBS2 
in the endothelial and smooth muscle cells inhibits the 
MMP2 protein further destabilizing the correct balance 
in ECM homeostasis.

 Our research has its limitations. First, the sample 
size in the experiment was small and a larger number of 
tissue samples are needed to confirm our findings. Sec-
ond, mRNA expression is not a precise indicator of the 
level of protein in tissues and its specific location. More 
research is needed to understand the molecular mecha-
nisms by which thrombospondins work in AAA.
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