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The bacteria Legionella, being able to infect both mac-
rophages and protozoans, reduce oxidative phospho-
rylation and induce glycolysis, which allows pathogens to 
grow and replicate in these cells. In amoeba-like inflam-
matory macrophages (M1), the phagocytizing cells of the 
primary immune defense, an increase in the rate of glyco-
lysis is followed by a decrease of oxidative phosphoryla-
tion. The opposite takes place in anti-inflammatory mac-
rophages (M2). They change from glycolysis to oxidative 
metabolism when AMP-dependent kinase (AMPK) is ac-
tivated by a high ratio of AMP/ATP. Stimulation of mac-
rophages with anti-inflammatory cytokines causes activa-
tion of AMPK. Infection of macrophages with the parasitic 
flagellate Leishmania infantum induces a switch from an 
initial glycolytic phase to oxidative phase with the essen-
tial role of AMPK in this change. Activated AMPK induces 
catabolic pathways effectively producing ATP as well as 
processes requiring the energy supply. AMPK regulates 
the migration of cells and enhances the phagocytic activ-
ity of macrophages. In macrophages, bacterial products 
activate TLRs and NF-κB signaling, causing an increase of 
transcription of hypoxia-induced factor HIF-1α (a subunit 
of HIF-1). This brings about induction of the enzyme and 
transporter expression essential for glycolysis and the 
pentose phosphate pathway to proceed and makes bio-
synthetic processes and ROS production in macrophages 
possible. Hypoxia augments macrophage phagocytosis 
in a HIF‐1α‐dependent manner. Multicellular parasites ex-
perience changes in the availability of oxygen in their life 
cycle. In the nematode Ascaris suum, HIF participates in 
the pre-adaptation to hypoxic conditions after infection of 
their hosts. Also, the freshwater and marine invertebrates 
meet changes of oxygen concentrations. In the anaero-
bic branch of the respiratory chain of these invertebrates, 
fumarate serves as the terminal electron acceptor that is 
reduced to succinate in complex II of the ETC. In mam-
malian cells, accumulation of succinate under hypoxic 
conditions suggests that the mammalian complex II may 
reduce fumarate to succinate, too. The data reviewed here 
show that the ability to shift the cell metabolism towards 
glycolysis observed in activated macrophages can be 
traced back in evolution to metabolic changes character-
izing protozoans infected with bacteria. Anabolic needs of 
multiplying bacteria direct host metabolism to glycolysis 
that produces, aside from ATP, precursors of the amino 
acids used by the pathogen for its protein synthesis. M1-
activated mammalian macrophages behave in the same 
way. Regulation of metabolism in M1 and M2 macrophag-
es is further enhanced by HIF-1 and AMPK, respectively. 
These archaic functions of AMPK and HIF, important also 
to control phagocytosis and cell migration were extended 
to embryonic development in multicellular organisms.
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NATURE OF ENERGY AND BUILDING ELEMENTS 
PRODUCTION IN THE CELL IS UNIVERSAL

Last years have introduced significant changes to 
our understanding of metabolic aspects of the immune 
cell’s activation. The phagocytic macrophages of mam-
mals have a long evolutionary history and are believed to 
preserve primary mechanisms of an immune response, 
found already in the sponge amoebocytes (ref. in Dzik, 
2010). This review aims to show that the metabolic pro-
cesses accompanying macrophage activation are evolu-
tionary conserved and that homologous mechanisms act 
in all cells of multicellular organisms from embryogen-
esis to maturity.

The main metabolic demand necessary for surviving 
of all organisms is nutrient supply providing energy and 
building elements. The energy providing mechanisms de-
pend on availability of the oxygen and fuel, mainly glu-
cose, that degradation pathways are central throughout 
all domains of life. The two main metabolic routes for 
providing the energy in cells include anaerobic glycolysis 
(Embden-Meyerhof-Parnas pathway, EMP) and aerobic 
oxidative phosphorylation (oxphos), comprising citric 
acid cycle and respiratory chain complexes, with much 
higher efficiency than the former one. With limited 
oxygen supply cells depend on glycolysis for providing 
energy from carbohydrates. Without oxygen, glycolysis 
supplies 2 molecules of ATP and 2 pyruvates per one 
molecule of glucose. To recover the NAD+ necessary 
for proceeding of glycolysis, pyruvate is reduced to lac-
tate by lactate dehydrogenase in the lactic acid-producing 
bacteria, erythrocytes, and during exhaustive muscle cell 
contraction. Instead, in yeast, pyruvate is metabolized to 
ethyl alcohol by a two-step reaction catalyzed by pyru-
vate decarboxylase and alcohol dehydrogenase to obtain 
NAD+. In aerobic organisms in the presence of oxygen 
glycolysis is suppressed and oxidative phosphorylation 
enhanced. The main switch between both pathways de-
pends on oxygen availability that is required to complete 
the oxphos processes. This phenomenon was named the 
Pasteur effect because it was Louis Pasteur who found in 
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1857 that butyric acid fermentation is arrested when air 
is introduced to the fermenting fluid. The Pasteur effect 
is considered the most archaic autonomous adaptations 
of the cell to hypoxia during the anaerobic fermentation. 
Otto Warburg in 1947 found that cancer cells maintain a 
very high rate of glycolysis even in the presence of oxy-
gen. The so-called Warburg effect can be considered as 
a loss of ability to use the Pasteur effect (Amoêdo et al., 
2013).

Metabolic flow through glycolysis is controlled at three 
steps. Hexokinase is inhibited by its product glucose-6-P. 
Fructose-2,6-bisphosphate, AMP, and ADP are allosteric 
activators of phosphofructokinase whereas ATP, citrate, 
and H+ inhibit the enzyme. Pyruvate kinase is activated 
by fructose-1,6-bisphosphate and inhibited by acetyl-
CoA, ATP, and alanine. Overall, glycolysis slows down 
when the energy charge is high or the intermediates of 
the Krebs cycle are abundant. It is noteworthy that gly-
colytic intermediates give rise to several amino acids: Ser, 
Gly, Cys, Ala, Val, Leu, Try, Phe, Tyr, and glycerol, a 
precursor of triacylglycerols and glycerophospholipids.

Under conditions of lack or limitation of carbohy-
drates, glucose can be synthesized from noncarbohydrate 
compounds such as lactate, amino acids, and glycerol in 
the process of gluconeogenesis that is identical in all or-
ganisms (Romano & Conway, 1996).

Glycolysis and gluconeogenesis are controlled recip-
rocally. The difference between glycolysis and gluco-
neogenesis concerns three steps regulated by substrate 
cycles. Glycolysis is regulated primarily by reactions 
catalyzed by hexokinase, phosphofructokinase, and pyru-
vate kinase. The opposite reactions in gluconeogenesis 
catalyzed by glucose-6-phosphatase, fructose-1,6-bispho-
sphatase, and the combination of pyruvate carboxylase 
and phosphoenolpyruvate carboxykinase control synthe-
sis of glucose de novo. Fructose-1,6-bisphosphatase is in-
hibited by fructose-2,6-bisphosphate, AMP, and citrate. 
Pyruvate carboxylase is inhibited by ADP and stimulated 
by acetyl-CoA. The remaining reactions of gluconeogen-
esis are catalyzed by the glycolytic enzymes that drive re-
versible reactions in either direction according to mass 
action. Thus, the rates of glycolysis and gluconeogenesis 
depend mostly on the energy charge and nutrient status 
of the cells.

Ronimus and Morgan (Ronimus & Morgan, 2003) 
have reviewed the present knowledge concerning the 
distribution and phylogeny of enzymes involved in the 
Embden-Meyerhof-Parnas pathway. The main metabolic 
pathway of glycolysis is found in all three domains of 
life, Archaea, Bacteria, and Eucarya, although a signifi-
cant variability of enzymes, especially in the hyperther-
mophilic bacteria and in the Archaea occur. The genes 
encoding the enzymes of the lower portion of glycolysis 
(the trunk pathway), including triosephosphate isomer-
ase, glyceraldehyde-3-phosphate dehydrogenase, phos-
phoglycerate kinase, and enolase, were all present before 
the divergence of the archaeal and bacterial domains, 
i.e. in the presumed last universal common ancestor 
(LUCA). The trunk pathway is essential for amino acid, 
pentose phosphate, and purine synthesis, therefore it is 
under rigorous evolutionary maintenance.

The enzymes of the trunk pathway are also common 
to the Entner-Doudoroff (ED) route that is widely dis-
tributed in bacteria where it can be a major pathway of 
glucose catabolism under aerobic conditions (Romano & 
Conwey, 1996). In this pathway, glucose-6-phosphate is 
oxidized to 6-phosphogluconic acid with a concomitant 
reduction of NADP to NADPH. The 6-phosphogluco-
nate is then dehydrated and split into glyceraldehyde-

3-phosphate and pyruvate. Glyceraldehyde-3-phosphate 
is catabolized, as in glycolysis, which results in the pro-
duction of NADH and ATP molecules. Thus, glucose 
molecule catabolized through the ED pathway is degrad-
ed to two pyruvates finally yielding one ATP plus one 
NADPH and one NADH.

The universal occurrence of enzymes of the trunk 
pathway, in conjunction with their phylogeny, supports 
the concept that the glycolysis pathway evolved from the 
bottom up, following the direction of gluconeogenesis. 
In addition, sequence analysis of compartment-specific 
isoforms of triosephosphate isomerase and glyceralde-
hyde-3-phosphate dehydrogenases supports the idea that 
glycolytic enzymes of Eukaryota have been acquired 
from mitochondrial genomes (ref. in Liaud et al., 2000). 
Hexokinase, glucose phosphate isomerase, 6-phospho-
fructokinase, the enzymes of the upper portion of the 
EMP pathway, probably derived from various gene fami-
lies occurring in hyperthermophiles and other Archaea 
(ref. in Ronimus & Morgan, 2003).

Parallel to glycolysis is the pentose phosphate path-
way (PPP) of glucose catabolism, which branches from 
the glycolysis at the glucose 6-phosphate step and op-
erates in two phases; oxidative and nonoxidative. The 
oxidative phase results in the production of ribulose-5- 
phosphate, CO2, and 2 moles of NADPH per glucose 
6-phosphate molecule. In a nonoxidative phase, some 
ribulose-5-phosphate is converted to ribose-5-phos-
phate. The synthesis of 5-carbon sugars is provided by 
a complex series of sugar interconversions. The enzy-
matic rearrangements in the non-oxidative phase with 
the participation of transketolase and transaldolase give 
two fructose 6-P molecules and one glyceraldehyde 3-P 
from the three pentose phosphates. The most impor-
tant regulatory factor is the intracellular concentration of 
NADP+. NADPH competes with NADP+ in binding to 
glucose 6-phosphate dehydrogenase (catalyzing oxidation 
of glucose-6-P to 6-phosphogluconolactone) and inhibits 
that enzyme. This reaction is rate-limiting for the pen-
tose phosphate pathway and serves as the control point. 
The pentose phosphate pathway competes with glycoly-
sis for glucose-6- phosphate. Whereas glycolysis is reg-
ulated chiefly by the energy status of the cell and fuel 
availability, flux through the PPP depends on the cellular 
[NADP+]/[NADPH] ratio. The pentose phosphate path-
way is regulated also due to sedoheptulokinase (SHPK) 
activity (Kardon et al., 2008; Wamelink et al., 2008). The 
enzyme was known earlier under the name carbohydrate 
kinase-like (CARKL). SHPK phosphorylates sedohep-
tulose on the C7. The enzyme balances the S7P from 
the non-oxidative part of PPP and G3P from glycolysis. 
SHPK creates a second rate-limiting step in PPP aside 
from glucose-6-phosphate dehydrogenase. The PPP sup-
plies NADPH and ribose 5-phosphate that are vital for 
the survival and proliferation of cells. NADPH acts as a 
reductant required for the synthesis of fatty acids, ster-
ols, nucleotides, and non-essential amino acids, and the 
ribose-5-P is a building compound for nucleic acid syn-
thesis. The PPP is recognized as a central player in con-
trolling and maintaining the redox homeostasis of cells 
since NADPH serves as a cofactor for the reduction 
of oxidized glutathione (GSSG) to reduced glutathione 
(GSH) via glutathione reductase. NADPH takes part in 
reactions of NADPH oxidase and nitric oxide synthase 
which produce reactive oxygen and nitrogen species re-
spectively.

The oxidative branch of the PPP is not universal since 
it has not been found in many thermophilic and aerobic 
organisms (Bräsen et al., 2014). The oxidative branch is 
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highly active in the majority of eukaryotes (Miclet et al., 
2001). Reactions of the non-oxidative phase of PPP may 
have derived from pre-biotic metal-catalyzed intercon-
versions of sugar phosphates in sequences that resemble 
glycolysis and the phosphate pathway. However, the in-
terconversion of glucose 6-phosphate to 6-phosphoglu-
conate, delineating the oxidative PPP, was not likely in 
the conditions of the prebiotic ocean (Keller et al., 2014). 
This suggests that the non-oxidative branch is older than 
the oxidative branch of the PPP pathway. Reactions of 
the non-oxidative PPP (with the overlapping Calvin Cy-
cle and Entner-Doudoroff Pathways), take place nearly 
ubiquitously, and fulfill a central role to provide ribose 
5-phosphate for the nucleotide and nucleic acid synthe-
sis, as well as erythrose 4-phosphate for the synthesis of 
aromatic amino acids.

In eukaryotic cells, pyruvate obtained from glycoly-
sis is oxidized in mitochondria in the Krebs cycle, and 
NADH is reoxidized in the electron transport chain 
(ETC). Oxidative decarboxylation of pyruvate by the 
pyruvate dehydrogenase (PDH) complex in mitochon-
dria gives acetyl-CoA entering the CAC. Acetyl-CoA 
condenses with oxaloacetate to form citrate. After one 
turn of the cycle, oxaloacetate is regenerated and the 
process takes place anew. During the citric acid cycle, 
reduced electron carriers (NADH and FADH2) are 
produced and their reoxidation in the ETC supplies en-
ergy for ATP synthesis. The citric acid cycle may sup-
ply biosynthetic intermediates as well. Oxaloacetate and 
α-ketoglutarate are the α-keto-acid analogs of the amino 
acids, that is aspartate and glutamate, and are used in the 
synthesis of these and other amino acids by transamina-
tion. In the cytosol, citrate transported from mitochon-
dria is cleaved to oxaloacetate and acetyl-CoA, the latter 
being needed for the fatty acid biosynthesis. To replace 
these intermediates, anaplerotic reactions balance the loss 
of carbon from the cycle. Regulation of the citric acid 
cycle takes place at the level of fuel entry into the cycle 
(at the pyruvate dehydrogenase and the citrate synthase 
steps) as well as at the level of isocitrate dehydrogenase 
and α- ketoglutarate dehydrogenase reactions within the 
cycle. In mammals, the activity of the pyruvate dehydro-
genase complex depends also on the phosphorylation/
dephosphorylation of the pyruvate dehydrogenase subu-
nit. Allosteric interactions and concentration of sub-
strates control flux through the cycle. The most impor-
tant factor controlling the activity of the citric acid cycle 
is the intramitochondrial ratio of [NAD+] to [NADH]. 
When [NAD+]/[NADH] ratio decreases, because of re-
duction of the oxygen supply, the low concentrations of 
NAD+ may restrict activities of isocitrate dehydrogenase 
and α-ketoglutarate dehydrogenase. Also, a high level of 
ATP slows down the activity of the Krebs cycle.

The tricarboxylic acid cycle is widespread among 
α-proteobacteria, from which the mitochondria had de-
rived (Thrash et al., 2011). The same version of the citric 
acid cycle characterizes virtually all organisms, including 
also anaerobic chemotrophs. Chemotrophs do not oxi-
dase glucose for energy production but use an incom-
plete citric acid cycle both as a fermentative pathway and 
for biosynthesis. For these purposes, the last four reac-
tions of the citric acid cycle are reversed in the direction 
from oxaloacetate to succinate. NADH for reduction 
of oxaloacetate to malate derives from the glyceralde-
hyde-3-phosphate dehydrogenase reaction of glycolysis. 
In turn, as a result of the first three steps of the cit-
ric acid cycle, α-ketoglutarate, an essential precursor to 
biosynthesis, is obtained. However, there is no enzyme 
for the conversion of α-ketoglutarate to succinate in 

anaerobic chemotrophs. Molecular phylogeny suggests 
that the citric acid cycle originated as a reductive path-
way used by early autotrophs to bind CO2 at the stages 
of pyruvate dehydrogenase, isocitrate dehydrogenase, 
and α-ketoglutarate dehydrogenase (Mathews et al. 2013; 
Wood et al. 2004).

MACROPHAGES, THE PHAGOCYTIZING CELLS OF THE 
INNATE IMMUNE SYSTEM OF VERTEBRATES

In all mammalian cells, signals provided by nutrient 
availability and growth factors are recognized by specif-
ic cell surface receptors (Ward & Thompson, 2012). In 
cells of the immune system, the metabolic stimulation of 
TCR/CD28 receptors on T cells (Frauwirth et al., 2002), 
surface immunoglobulin receptors on B cells (Doughty et 
al., 2006), and Toll like receptors (TLR) on macrophages 
and dendritic cells (DCs) (Krawczyk et al., 2010; Hasche-
mi et al., 2012) trigger changes in cell metabolism charac-
teristic of the Warburg effect.

The homology of macrophages, the phagocytizing 
cells of the innate immune system of vertebrates, can be 
traced back to phagocytes of invertebrates (Hartenstein, 
2006). The recognition of foreign agents in invertebrates 
and vertebrates occurs through pattern recognition re-
ceptors. These receptors, such as Toll-like receptors 
(TLR), recognize infection with fungi or Gram-positive 
bacteria in Drosophila and activate the Toll pathway com-
parably to the mammalian Toll pathway (ref. in Dzik, 
2010). Although the ways of activation of TLR in Dros-
ophila and mammals are different, the proteins of these 
signaling pathways are homologs to each other (Akira 
et al., 2006). The canonical Toll/TLR pathway can be 
found on the animal phylogenetic tree since the branch-
ing off the anthozoan cnidarians (Miller et al., 2007). Ac-
tivation of macrophages by evolutionarily ancient Toll-
like receptors or intracellular bacteria is a phenomenon 
that may provide a hint why the metabolic change from 
oxidative phosphorylation to glycolysis occurs in inflam-
matory macrophages.

Newsholme et al. (1986) have shown the enhancement 
of glycolysis accompanied by a high hexokinase activity 
in inflammatory mouse macrophages. The rate of glyco-
lysis and glutamine metabolism rose significantly during 
phagocytosis or secretory activity. The enzymes of pen-
tose phosphate pathway, glucose-6-phosphate dehydroge-
nase, and 6-phosphogluconate dehydrogenase were also 
very active. Resting myeloid dendritic cells (a subpopu-
lation of monocytes/macrophages) use mainly oxidative 
phosphorylation to produce ATP but after stimulation 
of TLRs by microbial products a switch to glycolysis was 
observed (Krawczyk et al., 2010). This increased rate of 
glycolysis was accompanied by a diminution of oxidative 
phosphorylation and allowed to maintain a high level 
of ATP. The inflammatory subtype macrophages (M1) 
produce reactive oxygen species (ROS) and pro-inflam-
matory cytokines as a part of their antibacterial activity. 
The signals coming from the macrophage microenviron-
ment stimulate transcriptional programs to enforce mac-
rophage activation (Murray & Wynn, 2011; Davies et al., 
2013). Lipopolysaccharide (LPS) from the cell membrane 
of Gram-negative bacteria activates TLR4 what results 
in the activation of transcription factors such as nucle-
ar factor-κB (NF-κB) and interferon regulatory factors 
(IRFs). These factors stimulate the transcription of pro-
inflammatory cytokines: IL-1β, IL-6, and TNF-α. These 
cytokines appeared in evolution in the teleost fishes (ref. 
in Dzik, 2010). 
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In response to parasites, allergy, and long-term tis-
sue repair macrophages present anti-inflammatory be-
havior (subtype M2) (Murray & Wynn, 2011). These 
macrophages are very active and able to proliferate, and 
they rely mostly on oxidative metabolism for their ener-
getic and biosynthetic needs. M2 macrophages produce 
anti-inflammatory cytokines. They are, connected with 
humoral immunity and are characterized by diminished 
expression of major histocompatibility complex (MHC) 
class II and hence with the low ability for the presen-
tation of antigens (O’Neill & Hardie, 2013). The major 
inducers of M2 macrophages are IL-4 and IL-13. These 
cytokines appeared in evolution in teleost fishes (Wang 
& Secombes, 2015). The binding of IL-4, to its recep-
tor, activates the JAK-STAT pathway. The transcription 
factor STAT6 is responsible for the induction of several 
genes including PGC-1β (peroxisome-proliferator-activat-
ed receptor-γ co-activator-1β) responsible for activation 
of oxidative metabolism (Kelly et al., 2009), Arg1 (argi-
nase 1), Chil3 (Chitinase-like protein 3), and Retnla (Re-
sistin-like molecule α or FIZZ1). Retnla represses Th2 
response, induced as a result of helminth infection (Mur-
ray & Wynn, 2011).

Metabolic adaptation in activated macrophages

Changes in macrophage metabolism are triggered by 
polarizing signals coming both from the surrounding mi-
lieu and pathogens. The rapid shift from a resting state 
to the active state of macrophages is coupled with the 
generation of defense factors, enhanced phagocytosis, 
and antigen presentation. Metabolic changes accompany-
ing these processes in inflammatory cells resemble those 
in tumor cells, where mitochondrial enzymes are repur-
posed from the bioenergetic role of ATP generation to 
a biosynthetic one. However, modified metabolism in 
tumor cells results from mutated oncogenes and tumor 
suppressors (Ward & Thompson, 2012).

In TLR4-activated macrophages, the signal from li-
popolysaccharide receptor TLR4 induces a shift from 
the oxidative to glycolytic metabolism of the mac-
rophages. TLR4 pathway causes induction of the gly-
colytic enzymes, with a change from the expression of 
the liver isoform of 6-Phosphofructo-2-Kinase/Fructose 
-2,6-Biphosphatse 1 (PFKFB1) to the 6-Phosphofructo-
2-Kinase/Fructose-2,6-Biphosphatase 3 (PFKFB3) iso-
form, the type also commonly occurring in tumor cells 
(Rodriguez-Prados et al., 2010). This leads to the accu-
mulation of fructose-2,6-bisphosphate and consequently 
an increased glycolytic flux. In addition, pyruvate dehy-
drogenase kinase 1 (PDK1) inhibits the pyruvate dehy-
drogenase complex, decreasing the oxidation of pyruvate 
coming from glycolysis in TCA. PDK1 promotes glyco-
lysis and M1 macrophage activation (Tan et al., 2015). 
As a result of TLR4 activation, oxidative metabolism 
in mitochondria is partly diminished due to nitric oxide 
(NO) produced in mitochondria that competitively dis-
places oxygen from cytochrome c oxidase (West et al., 
2011). This limits the activity of the electron transport 
chain, which causes the production of bactericidal reac-
tive oxygen species (ROS). The activity of the pentose 
phosphate pathway rises because of the decreased activ-
ity of sedoheptulokinase (SHPK, CARKL) (Haschemi et 
al., 2012). As was mentioned earlier, NADPH produced 
in the pentose phosphate pathway is used for ROS re-
moving and for the reactions producing ROS and NO, 
the crucial components of the antimicrobial defense (Na-
than, 1992; Babior, 1999).

Significant changes in the activity of the Krebs cycle 
have been identified in proinflammatory macrophages. 
Strongly decreased expression of isocitrate dehydroge-
nase caused citrate accumulation in mitochondria. Citrate 
can be transferred to the cytosol via CIC (citrate carri-
er) in exchange for cytosolic malate. It was found that 
mRNA and protein of CIC were markedly increased in 
lipopolysaccharide-activated immune cells (Infantino et 
al., 2011). Due to the action of ATP citrate lyase, citrate 
is cleaved to acetyl CoA and oxaloacetate in the cytosol. 
Acetyl CoA can be used for the synthesis of phospho-
lipids, which are the source of arachidonic acid for pros-
taglandin production (Wightman & Dallob, 1990). Of 
note, CIC gene silencing or inhibition of CIC transport 
activity significantly diminishes the production of NO, 
ROS, and prostaglandins (Infantino et al., 2011). The 
second product of ATP citrate lyase, oxaloacetate, is re-
duced through cytosolic malate dehydrogenase to malate. 
The malic enzyme converts malate to pyruvate produc-
ing NADPH. Again, NADPH is required for NADPH 
oxidase and NO synthase. Importantly, citrate can be re-
directed to the generation of itaconic acid (known for its 
antimicrobial activity). Itaconate is a competitive inhibi-
tor of succinate dehydrogenase (SDH) in the TCA cycle 
(Cordes et al., 2016). As SDH is a subunit of complex II 
(CII) of the electron transport chain, itaconate disturbs 
ETC activity that influences the regulation of mtROS 
production and inflammatory gene induction. Inhibition 
of succinate dehydrogenase causes accumulation of suc-
cinate that stabilizes the α subunit of HIF (hypoxia-in-
duced factor) what allows induction of proinflammatory 
cytokine IL-1β, glycolytic enzymes, and glucose trans-
porters (Tannahill et al., 2013).

Depletion of citrate, from the TCA cycle for de novo 
lipid synthesis, requires restoring of the TCA cycle 
(termed anaplerosis) to go on. Glutamine replenishes the 
TCA cycle through glutaminolysis, which further results 
in the production of α-ketoglutarate that enter the TCA 
cycle (Hensley et al., 2013). As a result of the arginino-
succinate lyase activity, fumarate replenishes the cycle. 
The second product of this enzyme is arginine, the sub-
strate both for arginase and nitric oxide synthase.

In the mouse peritoneal macrophages stimulated ei-
ther in vivo with BCG vaccine or in vitro with (LPS + 
IFN-γ), significant enhancement of nitric oxide produc-
tion takes place (Dzik et al., 2002). Jha and others (Jha 
et al., 2015) reported that in (LPS+IFN-γ)-activated mac-
rophages, aspartate, and citrulline are used by arginino-
succinate synthase and argininosuccinate lyase to gener-
ate arginine, a substrate for NO production by iNOS. 
Mycobacterium tuberculosis infection brings about an import 
of arginine to macrophages to produce NO. After deple-
tion of extracellular arginine (Qualls et al., 2012), citruline 
import for arginine regeneration occurs to sustain nitric 
oxide production.

A shift towards aerobic glycolysis takes place, aside 
from the LPS-activated macrophages and dendritic cells, 
also in M1(IFN-γ) inflammatory macrophages, TH17 
lymphocytes producing interleukin-17, a pro-inflammato-
ry cytokine. However, in cells that restrict inflammation, 
such as regulatory T cells, quiescent memory T cells that 
carry the CD8 antigen, and M2 anti-inflammatory mac-
rophages, oxidative metabolism outweighs glycolysis (ref. 
in O’Neill & Hardie, 2013).

M2 macrophages demonstrate augmented oxidative 
phosphorylation and much slower rates of glycolysis 
(Rodriguez-Prados et al., 2010). They express PFKFB1 
but not PFKFB3. IL-4 brings about upregulation of 
CARKL, which preserves sedoheptulose 7-phosphate 
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(S7P) levels, diminishing flow through the PPP. Expres-
sion of CARKL sensitizes macrophages to M2 polariza-
tion (Haschemi et al., 2012). IL-4 signals through STAT6 
to induce PGC-1β (Vats et al., 2006). PGC-1β fosters 
mitochondrial biogenesis and oxidative metabolism, 
markedly by the enhanced expression of genes, protein 
products of which play a role in uptake and oxidation 
of fatty acids (Wu et al., 2010). SIRT1 (NAD-dependent 
lysine deacetylase) activates PGC-1β (ref. in Chen et al., 
2015). On the other hand, SIRT1 inactivates the p65 
component of the NF-κB (Kauppinen et al., 2013), re-
stricting the expression of NF-κB-dependent genes that 
is an anti-inflammatory action. Generation of ATP main-
ly from oxidative metabolism in mitochondria allows for 
using various sources of carbon compared with M1 mac-
rophages. This favors M2 macrophages’ role in tissue re-
pair and anti-parasitic action. Arginase is active in both 
of these processes (Allen & Wynn, 2011; Mylonas et al., 
2009). It is known that STAT6 and PGC-1β interact di-
rectly at the promoter of the ARG1 gene and activate 
its transcription in M2 macrophages (Vats et al., 2006). 
In IL-4 activated macrophages, nitrogen from glutamine 
is used for the hexosamine synthesis and generation of 
UDP-GlcNAC. UDP-GlcNAC is the substrate for N-
glycosylation of proteins found profusely on the surface 
of M (IL-4) macrophages (Jha et al., 2015).

Metabolic response of protozoan cells and 
macrophages to bacterial infection

The metabolic programs promoting macrophage acti-
vation by inducing glycolysis or oxidative phosphoryla-
tion are used already by protozoan cells infected with 
bacteria. Metabolic reprogramming takes place in amoe-
bas infected with the bacteria Legionella pneumophila, an 
aquatic pathogen that replicates within a wide variety of 
protist hosts, as well as in the vertebrate macrophages. 
During infection of amoeba or macrophage, the Legionel-
la containing vesicles (LCV) are formed by endoplasmic 
reticulum-derived vesicles containing also mitochondria 
(Francione et al., 2009).

The amoeba Acanthamoeba castellanii metabolizes glu-
cose largely via glycolysis and the pentose phosphate 
pathway. Pyruvate dehydrogenase transforms pyruvate 
into acetyl-CoA which enters the TCA cycle. As a result, 
the carbon backbone of many amino acids is synthesized 
(Schunder et al., 2014). L. pneumophila depends on amoe-
ba’s amino acids, mostly serine, from which it acquires 
carbon and energy for biosynthetic processes from the 
TCA cycle, throughout early replication (the exponential 
phase of growth) (Tesh et al., 1983; Price et al., 2011). L. 
pneumophila utilizes a conserved way of eukaryotic pro-
teasomal degradation of Lys48-linked polyubiquitinated 
proteins to produce amino acids. This way is used for 
the growth of bacteria in amoebae as well as in human 
cells (Price et al., 2011). When the amino acid level turns 
low, the bacteria shift from the replicative phase to the 
transmissive phase (post-exponential growth phase) (ref. 
in Best et al., 2018). At this moment, the uptake and uti-
lization of glucose by L. pneumophila increase for de novo 
synthesis of amino acids and storage of poly-3-hydroxy-
butyrate (PHB) (Häuslein et al., 2016). L. pneumophila uti-
lizes glucose at least predominantly through the Entner-
Doudoroff Pathway (Harada et al., 2010). The glycerol 
catabolism is also induced (Faucher et al., 2011). Thus, 
a switch from the replicative phase to the transmissive 
phase of L. pneumophila life cycle is tightly linked to the 
metabolism and to a life-cycle-specific substrate usage.

Several A. castellanii genes, products of which are in-
volved in the oxidation of fatty acids, biosynthesis of 
carbohydrates, and assembly of complex III of ETC, are 
downregulated at eight hours after infection and remain 
at the same level after 24 hours post-infection (Li et al., 
2020). A reduction of gene expression involved in ATP 
production/respiration takes place also during L. pneu-
mophila infection of the slime mold Dictyostelium discoideum 
(Kjellin et al., 2019). This corresponds to a reduction 
of mitochondrial respiration as well as the cellular ATP 
pool by 6 h post-infection observed in macrophages 
(Escoll et al., 2017). The dynamics of these metabolic 
changes in macrophages during L. pneumophila infection 
shows that shortly after infection both glycolysis and 
oxidative phosphorylation are increased, which peaks 
one hour post-infection. Then oxidative phosphorylation 
is severely reduced, while glycolysis remains high. This 
second phase lasts at least 5 hours post-infection, which 
precedes bacterial replication and the beginning of the 
macrophage cell death. The first phase is independent 
of the type IV secretion system (T4SS) while the second 
phase is T4SS-dependent (Escoll et al., 2017). T4SS al-
lows injecing effector proteins into macrophages in or-
der to replicate within LCV. L. pneumophila mainly acti-
vates TLR-2 during infection (Archer et al., 2006), and 
activation of TLR-2 results in increased glycolysis and 
oxidative phosphorylation in human primary cells (Lach-
mandas et al., 2016). Escoll et al. (2017) suggested that 
increased glycolysis and increased oxidative phosphoryla-
tion in the first phase is TLR-2-dependent, but T4SS-in-
dependent. Further, they propose that bacterial effectors 
injected through T4SS initiate a Warburg-like program in 
the second phase, disrupting the mitochondrial network. 
Infection with L. pneumophila causes extended activation 
of NF-κB in macrophages (Fontana et al., 2011).

Induction of glycolysis and restriction of oxidative 
phosphorylation allow L. pneumophila to replicate due to 
the biosynthetic role of glycolysis (Escoll et al., 2017). 
Increased glycolysis and higher level of its intermediates 
in the infected macrophages can be used for the serine 
synthesis (like the pathway in proliferating cancer cells), 
therefore supplying the main amino acid required for the 
growth of L. pneumophila. Also, macrophages infected 
with Mycobacterium tuberculosis show an enhanced glucose 
uptake and increased glycolysis accompanied by dimin-
ished oxidative phosphorylation (Gleeson et al., 2016). 
The glycolytic intermediates are directed to lipid bodies, 
fatty acids from which are sources of energy and carbon 
(Singh et al., 2012). In the case of infection by Chlamydia 
trachomatis bacteria, increased glucose uptake and glyco-
lysis were observed with flux of glycolytic intermediates 
to the pentose phosphate pathway to provide nucleo-
tides for bacterial replication (Siegl et al., 2014). These 
examples show that host cell glycolysis seems to be the 
preferred metabolism for different intracellular bacteria, 
probably because the intermediates for bacterial growth 
are produced due to glycolysis. Intracellular bacteria ex-
ploit some host-cell-derived substrates as the main en-
ergy sources: Legionella uses amino acids, M. tuberculosis 
fatty acids, Chlamydia malate. Thus, the Warburg-like me-
tabolism, induced in the cell by the bacterial infection, 
enables the synthesis of metabolites indispensable to 
complete the development of pathogens and their sur-
vival (Escoll et al., 2017; Gleeson et al., 2016). The War-
burg-like metabolism found in phylogenetically distant 
protozoans and macrophages after bacterial infection 
shows that this strategy is evolutionarily conserved be-
cause it protects pathogens from host glucose depletion.
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Intracellularly multiplying bacteria, as well as prolifer-
ating cancer cells, have extremely large biosynthetic re-
quirements. Only the metabolic program based on glyco-
lysis combined with biosynthetic pathways using Krebs 
cycle intermediates can fulfill these demands. The aim of 
the program is the limitation of ATP synthesis through 
oxidative phosphorylation (Vander Heiden et al., 2009). 
Thus, the oxidative phosphorylation is relatively inactive 
in differentiating or proliferating cells, such as stem cells, 
activated T-cells, or LPS-stimulated macrophages. In 
these cells, metabolism relies on aerobic glycolysis (ref. 
in Escoll & Buchrieser, 2018).

AMPK AND TORC KEEP IN BALANCE CATABOLIC AND 
ANABOLIC PROCESSES

A metabolic shift towards glycolysis was first observed 
in cancer cells. It takes place during embryonic devel-
opment, angiogenesis, and in various organs of mature 
individuals. Hypoxia-induced factor 1α (HIF-1α) and 
AMP-stimulated protein kinase (AMPK), are key regula-
tors of oxygen sensing and energy balance, respectively. 
AMPK responds to the low energy level and it promotes 
cell growth inhibition and stimulation of catabolic pro-
cesses to enhance nutrient availability and energy level 
(Hardie, 2014). An antagonist of AMPK pathway signal-
ing is TORC (target of rapamycin complex).

Under favorable energy conditions, TORC promotes 
protein synthesis and cell growth (Laplante & Sabatini, 
2012). Accordingly, enzymes relevant for mitochondrial 
activity, glucose transport and glycolysis, carbohydrate 
storage, lipid metabolism, as well as protein translation 
and the cell cycle are controlled by AMPK and/or TOR. 
(Angin et al., 2016)

Regulation of AMPK and TORC activity

AMPK exists in virtually all eukaryotic cells, as a 
highly conserved Ser/Thr kinase. Its composition and 
regulation were recognized in mammalian cells. This het-
erotrimeric kinase consists of α, β, and γ subunits. The 
α subunit contains the catalytic domain and is the main 
site of enzyme regulation by phospho-dephosphorylation 
at threonine 172 (Thr 172) in the activation loop (Haw-
ley et al., 1996). The β subunit contains a carbohydrate-
binding module (CBM) that associates with glycogen in 
a phosphorylation-dependent manner (Oligschlaeger et 
al., 2015). The γ subunit contains four cystathionine-
β-synthase (CBS) motifs; these domains create the two 
binding sites for AMP, the allosteric activator. The en-
zyme is regulated by the AMP/ATP ratio, a high ratio 
leading to high AMPK activity. In the most active form 
of the enzyme, the α-subunit is both phosphorylated (at 
Thr 172) and bound to AMP at two sites. AMP regu-
lates the AMPK activity by allosteric and covalent mech-
anisms (Weekes et al., 1994; Hawley et al., 1995; Davies 
et al., 1995) and importantly, allosterically activates up-
stream kinase, LKB (liver kinase B1) enhancing its activi-
ty towards AMPK. LKB1 possess high basal activity and 
phosphorylates Thr 172 on AMPK constitutively (Liz-
cano et al., 2004). In addition, binding of adenine nucleo-
tides to the regulatory γ-subunit of AMPK brings about 
conformational changes that modulate the phosphoryla-
tion state of Thr 172, thus adopting the enzyme activ-
ity according to the energy status level of the cell. The 
binding of ATP (which indicates adequate energy levels) 
diminishes net Thr 172 phosphorylation, whereas bind-
ing of ADP or AMP (which indicates decreased energy 
levels) enhances net Thr 172 phosphorylation, increas-

ing the kinase activity (Hawley et al., 1995; Oakhill et al., 
2011). Finally, AMP inhibits dephosphorylation, of the 
AMPK by human protein phosphatase-2Cα and native 
bovine protein phosphatase-2AC (Davies et al., 1995).

AMPKα can be phosphorylated also on Thr 172 by 
kinase TAK1 (transforming growth factor β-activated ki-
nase 1) (Neumann 2018) and by CamKKs (Calmodulin-
dependent protein kinase kinases) (Hurley et al., 2005) 
following the increases of intracellular Ca2+ levels. Other 
protein kinases PKA (Djouder et al., 2010), PKC (Heath-
cote et al., 2016), PKD (Coughlan et al., 2016), S6K (ri-
bosomal subunit S6 kinase) activated by the MAPK/
ERK pathway, Akt (PKB) (Hawley et al., 2014), and 
glycogen synthase kinase (GSK) (Suzuki et al., 2013) 
phosphorylate different serine residues in the ST-loop of 
AMPKα, preventing Thr 172 phosphorylation, thus in-
hibiting AMPK activity.

AMPK is activated under conditions of reduced gen-
eration of ATP such as glucose depletion, ischemia, oxi-
dative stress as well as during muscle contraction (due to 
increase of ATP consumption) (Hardie, 2007). Due to 
the phosphorylation of metabolic enzymes and the ef-
fects on transcription, AMPK turns on the cellular up-
take of glucose and fatty acids, and their oxidative me-
tabolism. On the other hand, AMPK turns off biosyn-
thetic pathways for instance the synthesis of glucose, gly-
cogen, and lipids in the liver (ref. in Hardie et al., 2012).

AMPK activates catabolic processes and inhibits 
anabolic processes, partially by negative regulation of 
mTORC1 signaling. TOR is Ser/Thr protein kinase 
(Wullschleger et al., 2006; Laplante & Sabatini, 2012) 
that promotes anabolic processes under conditions of 
high nutrient and energy levels. In mammals, there are 
two complexes containing mTOR kinase: mTORC1 and 
mTORC2. Other subunits of these complexes such as 
Raptor and Rictor are different from each other and 
are found in mTORC1 and mTORC2, respectively. 
mTORC1 connects the availability of nutrients (mainly 
amino acids) and growth factor signaling with anabolic 
processes in proliferating cells and tumors. Branched-
chain amino acids, particularly leucine, are potent nutri-
ent activators of mTORC1. The RAG family of small 
GTPases is involved in amino acid sensing (Sancak et al., 
2008). AMPK phosphorylation of Raptor brings about 
the inhibition of mTORC1 and the arrest of cell-cycle 
caused by energy stress (Gwinn et al., 2008). As a result 
of its inhibitory effect on mTORC1 signaling, AMPK 
switches off protein synthesis and favors autophagy 
(Gwinn et al., 2008; Inoki et al., 2012). It also downregu-
lates the expression of HIF-1α (Shackelford et al., 2009).

Evolutionary conservation of AMPK and TORC pathways

AMPK is present in protists, plants, fungi, and ani-
mals (Hardie, 2014; Garcia & Shaw, 2017). The general 
AMPK structure did not significantly change in the evo-
lution of animals, except for duplications of some of the 
subunits. Amino acids critical for the function of AMPK 
are either conserved or substituted by biochemically sim-
ilar residues in other taxa (ref. in Sinnett & Brenman, 
2016). These conserved amino acid residues concern 
those regulating AMPK activity, subunit interactions, and 
localization of the enzyme. A functional AMPK, as well 
as an LKB1 (liver kinase B1) homologs, were discovered 
in the amoebozoan Dictyostelium (Bokko et al., 2007, Dic-
tyBase accession no. DDB02290349; Bokko et al., 2007). 
In sucrose non-fermenting fungi, SNF, a homolog of 
AMPK was found (Hong et al., 2003). Similarly, LKB1, 
the upstream kinase of AMPK, is an evolutionarily con-
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served enzyme, having homologs throughout eukaryotes. 
Also, reaction of AMPK phosphorylation catalyzed by 
LKB1 is a conserved substrate-kinase reaction occurring 
in organisms from yeast to mammals (ref. in Nakano & 
Takashima, 2012). In addition, expression of acetyl CoA 
carboxylase, the first enzyme of lipid biosynthesis path-
way, that is phosphorylated and inactivated by AMPK 
(Carling et al., 1987), points to the evolutionary signifi-
cance of this signaling pathway, preserved in both mam-
mals and insects (flies) (Pan & Hardie, 2002).

The animal AMPK enzyme regulates genes and pro-
teins that take part in oxidative fuel selection related 
to the transition from energy-rich to energy-poor con-
ditions (Hardie, 2014; Garcia & Shaw, 2017). Once 
switched on, AMPK reestablishes energy homeostasis by 
induction of catabolic pathways that produce ATP ef-
fectively while switching off energy-using processes like 
biosynthesis and cell-cycle progression (Imamura et al., 
2001; Jones et al., 2005). New functions were developed 
during the evolution of metazoans so that hormones and 
adipokines affect AMPK activity regulating energy bal-
ance at the whole body level (Hardie et al., 2012).

Like the AMPK pathway, the TOR pathway is highly 
conserved from yeast to humans

Roustan and others (Roustan et al., 2016) have re-
ported that the phylogenetic profiles of the TOR path-
way indicate the presence of both TORC1 and TORC2 
already in the LUCA (last universal common ancestor). 
The RAG complex, which regulates TORC1 on the base 
of the amino acid availability is as old as the eukaryotes. 
The same also concerns the tuberous sclerosis complex 
(TSC2), which stimulates mTORC1 (Covarrubias et al., 
2015) and the pathways such as IκB kinase β (IKBKB), 
ERK, and AKT, which combine the extracellular and 
cellular energy level signals. The TORC pathway appears 
to be significantly stable in the course of evolution. 
Among several modifications, there is for instance dupli-
cation of an ancestral TSC2-like gene at the origin of the 
opisthokont (fungi and animals) branch, which gave rise 
to contemporary paralogs TSC1 and TSC2, and to the 
appearance of REDD1 (regulated in development and 
DNA damage responses 1), a hypoxia-inducible factor-1 
(HIF-1) target gene, which plays a critical role in the 
inhibition of mTORC1 signaling during hypoxic stress 
(Katiyar et al., 2009). The ancestor of Opisthokontae was 
probably a heterotrophic organism as a common way of 
control of energy turnover in response to the availability 
of nutrients characterizes yeast and mammals. Yeast fer-
ment glucose when it is in large quantities that is a fairly 
ineffective way for energy production. At that time, the 
expression of enzymes involved in oxidative metabolism 
is repressed (Gancedo, 1992). When the supply of glu-
cose is limited, yeast SNF1 is activated (Woods et al., 
1994; Wilson, et al., 1996) and the yeast cell uses other 
fuels suitable for a more energy-efficient oxidative me-
tabolism. During the yeast adaptation to glucose restric-
tion, upregulation of genes required for oxidative metab-
olism and downregulation of genes required for glyco-
lysis are observed, and importantly, a SNF1 complex is 
necessary for most of these changes (Haurie et al., 2003).

Activation of AMPK in immune cells

The ancestral function of AMPK inferred from the 
role of its yeast orthologue was a response to glucose 
starvation, reflected by a high AMP/ATP ratio. Activa-
tion of AMPK in immune cells triggers the shift from 
a pro-inflammatory to an anti-inflammatory phenotype, 

in part by bringing a change from rapid glucose uptake 
and glycolysis to mitochondrial oxidative metabolism, as 
well as oxidation of fatty-acid (O’Neill & Hardie, 2013). 
Catabolic metabolism, regulated by AMPK support the 
anti-inflammatory macrophage functions (O’Neill & 
Pearce, 2016). Inflammatory response of bone marrow-
derived macrophages (BMDM) stimulated by infection 
with the intracellular bacteria Legionella pneumophila is ac-
companied by the diminished AMPK phosphorylation. 
This is in agreement with metabolic change observed 
after infection when a switch from oxidative phospho-
rylation to glycolysis occurs. (Escoll et al., 2017). Simi-
larly, AMPK phosphorylation is also diminished in L. 
pneumophila-infected mouse lungs (Kajiwara et al., 2018). 
Anti-inflammatory cytokines, IL-10, transforming growth 
factor β (TGFβ) (ref. in Dzik, 2010), and IL-4 (Wang & 
Secombes, 2015; Li et al., 2007) have appeared in evo-
lution at the vertebrate level in the teleost fishes. The 
treatment of macrophages with IL-10 or TGFβ causes 
rapid phosphorylation, thus activation of AMPK, where-
as the treatment of macrophages with LPS as a pro-
inflammatory stimulus causes AMPK dephosphorylation 
and inactivation (Sag et al., 2008). AMPK prevents LPS-
induced IκB-α degradation and stimulates Akt activation. 
Akt inhibits glycogen synthase kinase-3 (GSK3) by its 
phosphorylation (Cross et al., 1995). GSK3 is the consti-
tutively active downstream kinase of the phosphatidylin-
ositol-3-kinase (PI(3)K). Inhibition of GSK3 causes the 
PI(3)K pathway to selectively augment anti-inflammatory 
cytokine production with simultaneous inhibition of the 
pro-inflammatory cytokine production resulting from 
TLR stimulation of macrophages (Martin et al., 2005). 
Zhu and others (Zhu et al., 2015) have shown that 
AMPK is needed both for IL-10 activation of the PI(3)
K/Akt/mTORC1 pathway and STAT3-mediated anti-
inflammatory pathways regulating functional polarization 
of macrophages. The Akt-mTORC1 pathway links sens-
ing of amino acids to IL-4 activation of macrophages, 
so amino acid availability rises, while amino acid insuf-
ficiency reduces the induction of IL-4-dependent genes 
(Covarrubias et al., 2016). Akt mediates also enhanced 
glucose consumption in M2 macrophages, and this con-
tributes to induction of M2 gene expression (Covarru-
bias et al., 2016). Huang and others (Huang et al., 2016) 
have reported that mTORC2 works parallely with the 
IL-4Rα/Stat6 pathway to facilitate an enhancement of 
glycolysis during M2 activation via the induction of the 
transcription factor interferon regulatory factor 4 (IRF4). 
The IRF4 takes part in metabolic reprogramming to as-
sist M2 activation and influences fatty acid oxidation. 
The mTORC2 pathway is clearly important for the func-
tion of M2 macrophages as its inhibition decreases im-
munity to the parasitic nematode Heligmosomoides polygyrus. 
Remarkably, AMPK may directly increase the rate of gly-
colysis. The enzyme is able to phosphorylate PFKFB3 
enhancing its kinase activity, which results in an increase 
of the cellular concentrations of fructose-2,6-bisphos-
phate (the allosteric activator of phosphofructokinase), 
and the activation of glycolysis (Marsin et al., 2002). Due 
to this mechanism, macrophages can continue generat-
ing ATP in hypoxic regions of the infected or damaged 
tissue.

The AMPK activation in mammalian cells by parasite 
infection

Carbohydrate and lipid metabolism in macrophages 
is strongly affected as a result of infection with para-
sitic flagellates Leishmania major. mRNA levels of glucose 
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transporters and key glycolytic enzymes (hexokinase, 
pyruvate kinase M2, and lactate dehydrogenase a are en-
hanced in infected cells. Also, induction of the PDK1 
gene is initiated at the third hour after infection. It is 
accompanied by a downregulation of genes, products 
of which are involved in the Krebs cycle and oxidative 
phosphorylation. All of this suggests that in infected 
macrophages energy production depends mainly on the 
increased glycolytic flow. L. major infection induces ac-
cumulation of cholesterol and triacylglycerols as a source 
of high-energy substrates for the parasite needs (Rabhi et 
al., 2012). In addition to inflammatory mediators, L. ma-
jor promastigotes also induce the transcription of genes 
accompanying an M2 response, such as arginase1.

The observed induction of genes encoding glycolytic 
enzymes in L. major has been confirmed by analysis of 
bioenergetic fluxes in Leishmania infantum-infected bone 
marrow-derived macrophages (BMDM) (Moreira et al., 
2015). An initial transient glycolytic phase is followed 
by a switch to oxidative metabolism. During the glyco-
lytic phase, a decrease of ATP/AMP and NAD/NADH 
ratios takes place followed by induction of the AMPK 
activity. SIRT1 (NAD-dependent lysine deacetylase) and 
LKB1/AMPK are essential for the shift to oxidative 
metabolism. At this point, the respiration rate and ac-
tivation of peroxisome-proliferator-activated receptor-γ 
co-activator-1α (PGC-1α), the main inducer of mito-
chondrial biogenesis, increase. The energetic and redox 
pools of the parasite are restored. In the absence of 
SIRT1 or LKB1, infected macrophages cannot activate 
AMPK and initiate the metabolic switch. The need for 
macrophage AMPK for the successful Leishmania infec-
tion was demonstrated in mice with a myeloid-specific 
AMPK deficiency which displayed reduced parasite bur-
den (Moreira et al., 2015). In the liver stage of malaria, 
Plasmodium berghei infection decreases the transcription of 
glycolytic enzyme phosphofructokinase 1, and in paral-
lel increases transcription of gluconeogenesis enzymes, 
as well as AMPKα and AMPKγ in hepatocytes (ref. in 
Mesquita et al., 2016). Increased glucose levels are essen-
tial for the survival of sporozoites, their metabolism is 
strongly dependent on glucose.

The mice lacking AMPKα1 in alveolar macrophages 
and dendritic cells presented increased Type-1 responses, 
greater numbers of Th17 cells, and defects in the gener-
ation of M2 macrophages when infected with the gastro-
intestinal roundworm Nippostrongylus brasiliensis. Impair-
ment of Type-2 response was manifested by augmented 
intestinal worm burden. Also, tissue damages caused by 
the pathogen were poorly regenerated in these mice. It 
shows that the activity of AMPK in myeloid cells is es-
sential for protection against gastrointestinal nematodes 
(Nieves et al., 2016).

CELL MIGRATION

Cell migration makes possible embryonic morphogen-
esis, regeneration, and repair of tissues. It also makes 
possible the immune response when leukocytes leave the 
bloodstream and migrate into the surrounding tissue to 
kill invading microorganisms, infected cells and to clear 
debris (ref. in Ridley et al., 2003). To migrate, the cell has 
to become polarized, i.e. the molecular processes at the 
front of a moving cell should be different from those in 
the back. The capability of a multicellular organism cell 
to be polarized is inherited after protists or even bacte-
ria and is well developed in yeast to mammals (Etienne-
Manneville, 2004). Migration of cells occurs towards a 

gradient of the signal from growth factors, chemokines, 
or extracellular microenvironment (ECM) (Fig. 1). Cell 
surface receptors respond with the activation of G pro-
teins or receptor tyrosine kinases, stimulation of gua-
nine nucleotide exchange factors (GEFs) for cell divi-
sion control protein 42 (Cdc42) that is a small GTPase 
of the Rho family (which includes Rac/CDC42/RhoA), 
activation of phosphoinositide 3-kinases (PI3Ks), follow-
ing the recruitment of activated Rac. Signaling through 
Rho GTPases regulate dynamics of cytoskeleton in sev-
eral phases of cell migration, including polarity, adhesion, 
and membrane protrusions (Cain & Ridley, 2009). The 
local activation of Rac and/or Cdc42, and subsequently 
a Wiskott-Aldrich Syndrome protein/ verprolin homolo-
gous protein (WASP/WAVE) family proteins and the 
actin-related proteins-2/3 ( Arp2/3) complex, trigger the 
arrangement of a branching actin filament network at 
the leading edge, which in turn brings about a protrusion 
in the direction of migration (ref. in Ridley et al., 2003; 
Fig. 1).

Cdc42/Rac signal through p21-activates kinase (PAK) 
that phosphorylates LIM kinase, an actin-binding kinase. 
PAK and LIM kinase signaling regulates actin depolym-
erization (Edwards et al., 1999). The interaction of Rac/
Cdc42 with PAK causes also an enhancement of the 
phosphorylated myosin light-chain kinase (MLCK) level 

Figure 1. A simplified presentation of signaling pathways for 
cell migration with the pointing to the pathways which are in-
fluenced by AMPK (based on Etienne-Manneville, 2004).
Abbreviations: GAPs, GTPase-activating proteins; GEFs, guanine 
nucleotide exchange factors; Cdc42, cell division control protein 
42); WASP/WAVE, Wiskott-Aldrich Syndrome protein/ WASP ver-
prolin homologous protein; Arp2/3, actin-related proteins-2/3; 
APC, adenomatous polyposis coli protein; GSK3, glycogen syn-
thase kinase-3 beta; CLIP-170, cytoplasmic linker protein 170.
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that is essential for anchoring of lamellipodia (Kiosses et 
al., 1999). Cdc42 affects the location of the microtubule-
organizing center (MTOC) mainly through the PAR for 
”partitioning defective” (PAR6), present in a complex 
with PAR3 and an atypical protein kinase C (aPKC) 
(Etienne-Manneville & Hall, 2003). This complex is sug-
gested to orient the MTOC through local capture of mi-
crotubules at the leading edge via adenomatous polyposis 
coli protein (APC). It binds tubulin and locates on the 
ends of microtubules (Etienne-Manneville & Hall, 2002). 
This interaction of APC with microtubules is diminished 
by phosphorylation of APC by glycogen synthase ki-
nase-3 beta (GSK3 beta) Zumbrunn et al., 2001).

The other effector of Cdc42/Rac is IQGAP. This 
GTPase-activating protein (GAP) is a scaffold protein 
containing the IQ domain (Cao et al., 2015). IQGAP1 
catches the plus-ends of microtubules through cytoplas-
mic linker protein 170 (CLIP-170) (Gundersen, 2002).

Activated Rac1 and Cdc42 also tag the sites where 
IQGAP1 crosslinks actin filaments (not presented in 
Fig. 1). There, APC is acquired through IQGAP1 to ac-
tin filaments (Noritake et al., 2005). Activation of PAKs 
brings the phosphorylation/inhibition of the microtu-
bule-destabilizing protein stathmin (Daub et al., 2001). 
According to Wittmann and others (Wittmann et al., 
2003) stathmin could take part in the protrusive activity 
throughout cell migration.

AMPK function in cell polarity and motility

Activated AMPK increases the motility of the cell 
through tubulin polymerization and subsequent cytoskel-
etal reorganization (Nakano et al., 2010). AMPK controls 
cell migration by regulation of microtubule dynamics and 
directional cell migration through phosphorylation of the 
microtubule plus end protein CLIP-170 (Fig. 1). Accord-
ing to this, inhibition of AMPK activity prevents cell 
migration by hyperstabilizing the microtubule cytoskel-
eton via dephosphorylation of CLIP-170 (Nakano et al., 
2010). AMPK has been also suggested to be involved 
in controlling of actin cytoskeleton dynamics and reor-
ganization of the plasma membrane (Yan et al., 2015). 
An enhancement of the AMPK activity due to hypoxia 
suppresses migration of cells by rearranging actin fila-
ments after phosphorylation of PDZ and LIM domain 
protein 5 (Pdlim5) (Fig. 1). Phosphorylation of Pdlim5 
by AMPK inhibits cell migration by repressing the Rac1-
Arp2/3 signaling pathway. Both suppression and acti-
vation of AMPK cause inhibition of the cell migration, 
which suggests different mechanisms acting on CLIP-
170 or Pdlim5 (Yan et al., 2015).

AMPK signaling in cell polarity is evolutionarily 
conserved

In cultured mammalian cells, both anterior–posteri-
or in migrating cells and apical–basal in epithelial cells 
polarity demands participation of the PAR-3/PAR-6/
aPKC/CDC-42 complex. In the Caenorhabditis elegans 
zygote (Kemphues et al., 1988), establishing of ante-
rior- posterior cell polarity demands the expression of 
the PAR-3/PAR-6/aPKC/CDC-42 complex at the an-
terior end, but PAR1 and PAR2 at the posterior one. 
Although setting up the anterior- posterior axis occurs at 
different stages of development in response to different 
signals, it was found that the same conserved PAR pro-
teins play the crucial function in the creation of polarity 
both in C. elegans and Drosophila melanogaster (Goldstein & 
Macara, 2007).

PAR-4 is the LKB-1 orthologue in C. elegans (Nar-
bonne & Roy, 2006). It is indispensable for the cytoplas-
mic division during the early stages of embryogenesis. 
Maternal-effect lethal mutations in PAR-4 result in the 
loss of intestinal cell ability to differentiate. It has been 
shown that these mutations influence several facets of 
cell polarity (Morton et al., 1992).

In the human LS174T cell line (colon adenocarci-
noma), AMPK (activated due to energy deprivation) 
causes complete polarization and brush border forma-
tion in cells through phosphorylation of myosin regula-
tory light chain (MRLC) (Lee et al., 2007). In Drosophila, 
AMPK controls mitotic cell division and epithelial po-
larity subsequent to LKB1 through direct phosphoryla-
tion of MRLC (Lee et al., 2007). Studies on HeLa cells 
have shown phosphorylation of AMPK during mitosis, 
and AMPK was restricted to components of the mitotic 
apparatus apparently independent of the cellular energy 
levels (Vazquez-Martin et al., 2009a). AMPK has been 
found also to regulate indirectly MRLC phosphorylation, 
at least in part, by phosphorylation regulatory subunit 
12C (PPP1R12C) of phosphatase 1 and PAK2 in human 
cells during mitosis (Banko et al., 2011). For comple-
tion of mitosis phosphorylation of MRLC is necessary 
(Banko et al., 2011). Although energy is required to per-
form mitosis, the process proceeds even under energy 
stress in order to arrest cells at the G1/S checkpoint and 
allow them to await more beneficial nutrient conditions. 
On the other hand, the role of AMPK in mitosis may be 
independent of the energy status of the cell (Vazquez-
Martin et al., 2009b). Processes such as completion of 
mitosis, polarization, and migration could be crucial for 
various physiological functions. Although AMPK activa-
tion is generally linked with reduced energy consump-
tion, processes that need energy are also augmented by 
AMPK.

Phagocytic activity of neutrophils and macrophages 
is increased as a result of AMPK activity and ingestion 
of apoptotic cells or bacteria increases AMPK activity in 
macrophages (Bae et al., 2011). In vivo, AMPK activation 
results in enhanced phagocytosis of bacteria in mouse 
lungs.

Activation of PAK1/2 and WAVE2 (effectors 
of Rac1) occurs together with activation of AMPK. 
AMPK activation also causes phosphorylation of CLIP-
170, which takes part in the synthesis of microtubules 
(Fig. 1). Thus, the capacity of activated AMPK to in-
crease phagocytosis is coupled with the cytoskeleton or-
ganization, together with augmentation of microtubule 
and actin polymerization. According to Bae and others 
(Bae et al., 2011), AMPK activation concerns nonselec-
tive phagocytosis rather than more specific receptor-
dependent mechanisms recognizing individual targets. 
AMPK is involved also in the regulation of phagocytosis 
via remodeling of the actin cytoskeleton in hemocytes of 
oysters (He et al., 2019).

HYPOXIA-INDUCIBLE FACTOR-1 AS THE MAIN 
EFFECTOR TURNING ON THE ANAEROBIC METABOLISM

Systemic and cell-autonomous adaptations have been 
developed in the process of evolution in response to 
limited oxygen availability. The crucial factors controlling 
metabolism under hypoxia are heterodimeric transcrip-
tion hypoxia-induced factors (HIF-1 and HIF-2). Both 
isoforms contain α subunits that heterodimerize with 
HIF-1β and bind to the same DNA sequence hypoxia-
responsive element (HRE) but induced expression of 
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certain genes may vary. HIF-1α preferentially induces 
glycolytic pathway and HIF-2α is involved in the regu-
lation of genes important for tumor growth, cell cycle 
progression, and maintaining stem cell pluripotency (ref. 
in Loboda et al., 2012). HIFs activation is crucial for cell 
growth processes including development, angiogenesis, 
and vascular injury during hypoxia. The HIF-1 mediates 
the Pasteur effect. It is also an important mediator of 
the Warburg effect because of its function in the regula-
tion of glycolysis (Seagroves et al., 2001).

HIF-1 consists of HIF-1α and HIF-1β subunits. Both 
contain the helix-loop-helix-PAS (PER- ARNT-SIM) do-
main (Graham & Presnell, 2017). HIF-1β is constitutive-
ly expressed and the expression of HIF-1α is sustained 
at low levels in the majority of cells under normoxia.

The low level of HIF-1α subunit is maintained mainly 
due to O2-dependent hydroxylation of proline residues: 
402, 564, or both, by prolyl hydroxylase domain protein 
2 (PHD2), also named EglN. The oxygen Km values for 
the hydroxylation of HIFα by EglN hydroxylases are just 
slightly over those present during normoxic conditions 
(Hirsila et al., 2003). Hydroxylation of each site makes a 
binding place for the ubiquitin ligase containing pVHL 
(von Hippel-Lindau protein), the recognition module of 
this enzyme that assigns HIF-1α for proteasomal degra-
dation (ref. in Semenza, 2002). These hydroxylases be-
long to the iron(II)- and 2-oxoglutarate-dependent di-
oxygenase family generating CO2 and succinate from O2 
and α-ketoglutarate. In humans, three prolyl hydroxylase 
isoenzymes (PHD1-3) and asparagine hydroxylase fac-
tor inhibiting HIF (FIH) have been recognized (Hewit-
son et al., 2003). Low concentrations of O2, high con-
centrations of tricarboxylic acid cycle intermediates, for 
instance, succinate, fumarate, also chelators of Fe(II), 
inhibit the activity of hydroxylases. In addition, O2-inde-
pendent ubiquitination and proteasomal degradation of 
HIF-1α take place (Liu & Semenza, 2007).

Oxygen regulates the ability of HIF-1α to activate 
gene transcription. Under normoxic conditions, the co-
operative binding of VHL and FIH-1 allows recruiting 
of histone deacetylases that make the DNA less ac-
cessible to HIF-1α (Mahon et al., 2001). Furthermore, 
oxygen-dependent hydroxylation of Asn803 by FIH-1 
disturbs the interaction of HIF-1α with the co-activator 
p300 (Lando et al., 2002) and CREB binding protein 
(CBP) (Kallio et al., 1998).

Under hypoxic conditions, oxygen is rate-limiting for 
prolyl hydroxylase reaction (Epstein et al., 2001), which 
results in diminished ubiquitination of HIF-1α (Sutter et 
al., 2000) and decreased proteasomal degradation. The 
HIFα subunit becomes stable, makes a dimer with a 
HIF β subunit, translocates to the nucleus, and hundreds 
of genes can be activated in a cell-type-specific manner 
(ref. in Semenza, 2007). Hypoxia or low oxygen partial 
pressure cause the expression of genes involved in he-
matopoiesis, oxygen binding, and delivery. The HIF-1 
mediated expression of genes governing energy produc-
tion results in enhanced glucose uptake, and glycolysis, 
and diminished oxidative phosphorylation. HIF-1 directly 
transactivates the PDK1 gene (Kim et al., 2006; Papan-
dreou et al., 2006). It limits the entry of pyruvate into 
the Krebs cycle. Instead of this, pyruvate is reduced to 
lactate by the lactate dehydrogenase A and expelled from 
the cell by monocarboxylate transporter 4. Both proteins 
are the HIF responsive gene products (Ebert & Bunn, 
1998; Ullah et al., 2006). Inhibition of pyruvate dehydro-
genase causes attenuation of mitochondrial respiration 
and excessive ROS generation. Lactate dehydrogenase 
recovers NAD+ necessary to maintain glycolysis and 

ATP production under hypoxia, which is critical for hy-
poxic cells to survive.

Synthesis of HIF-1α protein depends on growth fac-
tor stimulation of receptor tyrosine kinases and a signal-
ing pathway guiding from phosphatidylinositol-3-kinase 
(PI3K) to the protein kinase B (AKT) and FRAP/ 
mTOR pathway (Laughner et al., 2001). The tumor sup-
pressor phosphatase PTEN inhibits this pathway as it 
dephosphorylates the products of the PI3K reaction. 
When the PTEN levels increase, both HIF-1α expres-
sion, and HIF-1-mediated gene transcription is inhibited, 
as was shown to take place in the prostate cancer and 
glioma cells (Zhong et al., 2000; Zundel et al., 2000).

Evolution of Hypoxia-inducible factor pathway

The core elements of the HIF pathway were formed 
before the metazoan common ancestor and the path-
way has been subjected to further processing and en-
largement in each of the successor lineages (Rytkӧnen 
& Storz, 2011). All the metazoan genomes, except for 
that of Bombyx mori, contain at least one HIF-α sequence 
(Graham, & Presnell, 2017). As a result of HIF-α du-
plication in the vertebrate stem lineage, four paralogs 
emerged, HIF-1α and HIF-2α being less divergent than 
the small HIF-3α or the HIF-α-like ones. The two lat-
ter paralogs were lost in many vertebrate lineages. Most 
vertebrate genomes contain between two and six HIF-α 
genes. Although HIF-α homologs have been found only 
in metazoans, prolyl hydroxylase homologs are also 
found in other eukaryotes. In Caenorhabditis elegans, the 
mRNA levels of prolyl 4-hydroxylase (egl-9) were en-
hanced because of hypoxia in a HIF-1-dependent man-
ner (Shen et al., 2005). Regulation of transcription of the 
prolyl 4-hydroxylase subunits by HIF turns out to be 
evolutionarily conserved (Takahashi et al., 2000). In hu-
mans, three PHD genes (egl-9 homologs) have been rec-
ognized, and PHD2 and PHD3 are induced by hypoxia 
as well. (Epstein et al., 2001; D’Angelo et al., 2003; Cioffi 
et al., 2003). On the other hand, homologs of FIH (fac-
tor inhibiting HIF) are not as common in metazoans as 
PHD enzymes.

HIF-β subunit in invertebrates, referred to as ARNTs, 
is distinct from vertebrate ARNTs. Additional vertebrate-
specific ARNT2 is related to other vertebrate ARNT se-
quences. In humans, three paralogs of the HIF-α subunit 
(HIF-1α, HIF-2α/EPAS, HIF-3α) and two paralogs of 
the HIF-β subunit (ARNT, ARNT2) occur (Graham & 
Presnell, 2017). Over the animal kingdom HIF accumu-
lates in hypoxic cells and operates in a very conserved 
way (Gorr et al., 2006). The genes strictly linked with 
HIF-α are absent in nearly all unicellular eukaryotes. This 
suggests that the appearance of the HIF gene family in 
metazoan might ensure better regulation of oxygen ho-
meostasis corresponding with the possible higher oxy-
gen requirements in multicellular organisms. Also, given 
HIF-1α conservation among the majority of metazoans, 
the appearance of HIF-2α in primitive chimaeroid fish 
Callorhinchus may be connected with the emergence of 
specialized systems for O2 delivery accompanying vascu-
larization (Graham & Presnell, 2017). HIF-2α expression 
was found to be essential for erythropoiesis, vasculariza-
tion, and pulmonary development in the vertebrates. The 
primordial role of HIF-1 is the regulation of metabolism 
(Semenza, 2012).

Role of HIF in macrophages

HIFs promote glycolysis and the pentose phosphate 
pathway inducing the relevant transporter and enzyme 
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expression, to provide an adequate amount of ATP for 
biosynthesis and antioxidant defense in conditions of 
lowered mitochondrial metabolism (ref. in O’Neill & 
Hardie, 2013). Stimulation of macrophages with LPS 
causes a switch from oxidative phosphorylation to the 
production of ATP by glycolysis. When mitochondria 
do not produce ATP, their membrane potential increas-
es. This is combined with the altering of metabolism 
to channel metabolites to succinate. The inflammatory 
phenotype of the macrophages is governed by succinate 
oxidation by SDH in mitochondria (Mills et al., 2016). 
Enhanced oxidation of succinate and increased mito-
chondrial membrane potential produce a redox signal 
that can influence HIF-1α activity (Mills et al., 2016). Ac-
cording to Chandel and others (Chandel et al., 2000), mi-
tochondria-derived ROS are both required and sufficient 
to initiate HIF-1α stabilization during hypoxia. Induction 
of proinflammatory IL-1β, as well as glycolytic enzymes 
and glucose transporters in LPS-activated macrophages 
dependent on HIFs transcriptional activity (Tannahill et 
al., 2013). HIFs activity is enhanced also due to the up-
regulation of pyruvate kinase muscle (PKM2) (Palsson-
McDermott et al., 2015).

Macrophages that lack HIF-1α have a reduced ability 
to kill bacteria, and impaired production of antimicro-
bial peptides and granule proteases (Peyssonnaux et al., 
2007; Nizet & Johnson, 2009). HIF-1α is necessary also 
to control the macrophage inflammatory response and 
promotes their phagocytic activity in the skin and joints 
(Cramer, 2003). Skin is a hypoxic organ and HIF-1α is 
expressed at high levels in the skin epithelium. Peysson-
naux and others (Peyssonnaux et al., 2008) have found 
that the production of antimicrobial peptide cathelicidin 
in keratinocytes depends on HIF-1.

During inflammation, both immune cells and patho-
gens have enhanced metabolic demands which result in 
local depletion of oxygen and hypoxia (Dehne & Brune, 
2012). It was found that when monocytes differentiate 
under hypoxia, a distinct macrophage phenotype devel-
ops with at least partially a higher level of HIF-1α pro-
tein (Staples et al., 2011).

HIF-1 plays a role in the M1 polarization of mac-
rophages (Nizet & Johnson, 2009). It has been shown 
that mouse macrophages overexpressing HIF-1α rep-
resent a hyperinflammatory state, showing an enhance-
ment of M1 markers and a diminished rate of oxygen 
consumption. M1 polarization of macrophages caused by 
HIF-1α overexpression occurred via enhanced transcrip-
tion of genes connected with glycolysis. Thus, promoting 
glycolytic metabolism, HIF-1 induces M1 polarization of 
macrophages (Wang et al., 2017).

Migration of macrophages and phagocytosis are HIFs-
dependent processes

Transcription factors belonging to the HIFs family 
also play roles in cell fate determination and cell mi-
gration (Cramer et al., 2003). In the absence of HIF-
1α, macrophages, concomitant with a decreased rate of 
glycolysis and energy production show impaired motil-
ity (Cramer et al., 2003). Hypoxia augments phagocy-
tosis and bacterial killing in macrophages in a HIF-1α-
dependent manner. HIF-1α deletion in macrophages 
hampers the hypoxia-induced increase in phagocytosis 
(Anand et al., 2007).

In severe hypoxia, HIF-1 mediates induction of pyru-
vate dehydrogenase kinase (PDK1). As a result, inhibi-
tion of pyruvate dehydrogenase complex diminishing 
oxidation of pyruvate in TCA takes place. Monocyte-de-

rived macrophages experience a gradual decrease in the 
concentration of oxygen when they migrate into areas 
of inflammation (Leach & Treacher, 1998). Semba et al. 
(2016) have found that in mild hypoxia (4–6% oxygen), 
metabolic changes mediated by HIF-1 cause induction 
of PDK1 even though cytochrome c oxidase activity re-
mains unchanged, a phenomenon named by the Authors 
glycolytic reprogramming. In mild hypoxia, the migratory 
activity of macrophages (in vitro and in vivo) depends on 
glycolysis. Pyruvate kinase PKM2 produces ATP in the 
last step of glycolysis. PKM2 co-localizes with F-actin 
in filopodia and lamellipodia where ATP is quickly con-
sumed during remodeling of actin (Semba et al., 2016). 
This suggests that even in mild hypoxia glycolytic repro-
gramming is essential for macrophage migration.

The myeloid-derived phagocytes neutrophils and mac-
rophages circulating in the oxygen-reach blood have 
low HIFs levels. Migrating into sites of the infection, 
they cross the endothelium and experience decreasing 
concentrations of oxygen. In these conditions, prolyl 
hydroxylase activity is inhibited and consequently, HIF-
1α protein is stabilized. Now, HIF-1α is able to form 
a functional transcription factor molecule with HIF-1β. 
The heterodimer translocates to the nucleus and acti-
vates transcription of innate immune response genes 
having hypoxia-responsive elements in their promoters. 
However, the maximal activation can be achieved due to 
the pathogen activation of TLRs and NF-κB, in order to 
increase HIF-1α transcription. This transcriptional activ-
ity of HIFs results in inhibition of apoptosis, reflected in 
the increased lifespan of phagocytes, promotes phagocy-
tosis, triggers the release of antimicrobial peptides and 
pro-inflammatory cytokines (TNF, IL-1, and IL-12), 
enhances TLR expression, and activates inducible NO 
synthase for the production of nitric oxide. Nitric oxide 
aside from its bactericidal activity hinders HIFs degra-
dation, which makes an amplification loop for fast acti-
vation of phagocyte response (Nizet & Johnson, 2009). 
However, the superoxide anion production by NADPH 
oxidase does not dependent on the transcriptional activ-
ity of HIF-1 (Peyssonnaux et al., 2005).

Infection with pathogens induces HIF expression in 
target cells

An acute infection caused by viruses promotes stabili-
zation of HIFs protein in infected cells.

In the case of the common respiratory syncytial virus 
(RSV) infection, HIFs stabilization in human bronchial 
epithelial cells occurs through a NO-dependent pathway. 
HIFs induce VEGF production and stimulate airway 
edema (Kilani et al., 2004).

Stimulation of macrophages or neutrophils by a vari-
ety of bacterial species as Staphylococcus aureus, Salmonella 
typhimurium, and Pseudomonas aeruginosa, induces increased 
levels of HIFs showing that this phenomenon is char-
acteristic of bacterial infection (ref. in Nizet & Johnson, 
2009). Such bacterial products as LPS and peptidoglycan, 
while activating TLRs and NF-κB signaling, cause an in-
crease of HIF-1α transcription (Frede et al., 2006).

Chlamydiaceae, obligate intracellular bacteria, are able 
to replicate even in 3% concentration of O2 (Rupp et 
al., 2007). In hypoxic Human Epithelial type 2 (HEp-2) 
cells, Chlamydium pneumoniae causes stabilization of HIF-
1α that promotes glucose uptake in the early phase of 
infection, important for replication of the bacterium. In 
the later phase of the chlamydial developmental cycle, 
uptake of glucose by C. pneumoniae-infected cells is radi-
cally decreased and further decreases subsequent to fol-
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lowing degradation of HIF-1α caused by the chlamydial 
protease-like activity factor. Degradation of HIF-1α 
through the mid to late phase of infection may prevent 
pro-apoptotic signaling in host cells helping the patho-
gen to persist infectious in hypoxic conditions (Rupp et 
al., 2007). Remarkably, HIF-1 and/or hypoxia may act 
either as an anti-apoptotic or pro-apoptotic factor, de-
pending on the cell type and experimental conditions 
(Piret et al., 2002).

Infection with the parasitic flagellate Leishmania ama-
zonensis results in cutaneous lesions. In the later stages 
of infection, induction of HIF was observed in the cy-
toplasm and parasitophorous vacuoles of macrophages 
recruited to these lesions (Arrais-Silva et al., 2005).

The obligate intracellular parasite Toxoplasma gondii 
causes opportunistic infections in fetuses and in immu-
nocompromised individuals. In infected fibroblasts, ex-
pression of HIF is induced (Spear et al., 2006). HIFs sub-
sequently activate genes for glycolytic enzymes, glucose 
transporters, and mevalonate metabolism (Bladder et al., 
2001). Under hypoxic conditions in the brain, muscle, 
and retina, where the parasite causes severe pathology, 
both T. gondii replication and its organelle maintenance 
are severely impaired in the host cells that lack HIF-
1α. According to Spear and others (Spear et al., 2006), 
two alternative explanations of probable HIFs need for 
the parasite successful replication: a specific HIFs tar-
get gene is important for the growth of the parasite, or 
activity of HIFs is indispensable for the preservation of 
homeostasis in the infected cells. The HIF-1 function 
appears to be a very important mediator of cell resist-
ance to intracellular pathogens (Knight & Stanley, 2019).

Adaptation of metazoan metabolism to changes of the 
oxygen concentration

A homolog of HIF-1 is necessary for adaptation to 
hypoxia in the free-living nematode Caenorhabditis elegans 
(Jiang et al., 2001). Studies of Shen and others (Shen et 
al., 2005) on hypoxia-induced genes in C. elegans showed 
that the glycolytic enzymes: hexokinase, phosphogluco-
mutase, enolase, and glycerol kinase were induced in an 
hif-1-dependent manner. Also, aconitase and isocitrate 
lyase involved in the conversion of fatty acids to sugars 
are induced by hypoxia.

Isocitrate lyase is a part of the bifunctional malate 
synthase/isocitrate lyase enzyme which transforms isoci-
trate to glyoxylate and succinate. Malate synthase cata-
lyzes the condensation of glyoxylate with acetyl-CoA, 
coming from fatty acids oxidation, giving malate, a sub-
strate for gluconeogenesis. This bifunctional enzyme ex-
pression at high levels occurs in embryos and L1 larvae. 
Nematodes are the only animals in which the glyoxylate 
metabolism has been detected (Liu et al., 1995). Pyruvate 
carboxylase, the key enzyme of gluconeogenesis, produc-
ing oxaloacetate, is induced by hypoxia also, but in an 
hif-1-independent manner.

Parasitic nematodes adapted to the changes in oxygen 
concentration during their life cycle, as exemplified by 
free-living and parasitic forms of Ascaris suum. Its third-
stage larvae (L3) live in normoxic condition but adults 
live in the small intestine where the oxygen concentra-
tion is below 5%. In the L3 larvae, phosphoenolpyru-
vate (PEP) is converted by pyruvate kinase to pyruvate 
in the last step of glycolysis, and acetyl-CoA is generated 
by pyruvate dehydrogenase complex entering the CAC. 
In adults living in anaerobic condition, carboxylation of 
PEP by phosphoenolpyruvate carboxykinase (PEPCK) is 
performed by the enzyme in the opposite direction than 

in gluconeogenesis, which results in oxaloacetate pro-
duction. Oxaloacetate is reduced to malate that reaches 
mitochondria, where it is converted to fumarate by re-
versible reaction of fumarase, and fumarate is reduced 
to succinate (Kita & Takamiya, 2002; Sakai et al., 2012). 
For fumarate reduction, complex II of ETC functions as 
quinol fumarate reductase (QFR, FRD), not like in aero-
bic conditions as succinate–ubiquinone reductase (SDH, 
SQR), to maintain redox balance in mitochondria of 
adult A. suum (Kita et al., 2002). Electrons from NADH 
are transferred to the rhodoquinone (RQ) via the NA-
DH-RQ reductase activity of mitochondrial complex I 
and then to fumarate through the rhodoquinol-fumarate 
reductase activity of mitochondrial complex II, with the 
generation of succinate. This anaerobic electron transfer 
in complex I is coupled with proton transport through 
the inner mitochondrial membrane and allows the syn-
thesis of ATP in anaerobic condition.

Roos & Tielens (Roos & Tielens, 1994) have found 
differences in the expression pattern of two genes cod-
ing the B subunit of the complex II between free-living 
(L3) and adult nematodes Haemonchus contortus. All adult 
parasitic worms examined until now use fermentative 
pathways for energy production. The major end prod-
ucts of anaerobic metabolism are typically lactate, suc-
cinate, acetate, and propionate. Remarkably, the genera-
tion of the same range of end products is favored both 
in the presence and in the absence of oxygen (Barrett, 
1991).

Both hif-1α and hif-1β mRNAs are present at all stages 
of A. suum life cycle, and most profusely in the aerobic 
free-living L3 larvae. Then their levels slowly diminish 
after infection of the host (Goto et al., 2013). High lev-
els of hif-1 mRNAs in third-stage larvae would be a pre-
adaptation to a hypoxic environment in the small intes-
tine. This phenomenon suggests the necessity of a rapid, 
adequate response resulting in the regulation of genes 
involved in anaerobic energy metabolism in the face of 
sudden changes in oxygen concentrations. It shows tran-
scription of A. suum hif-1 regulated rather at the stage-
specific way than in the oxygen-dependent way (Goto 
et al., 2013). The genes of all subunits of mitochondrial 
complex II (succinate–ubiquinone reductase/quinol-fu-
marate reductase), are stage-specific expressed (excluding 
the adult-type flavoprotein subunit), and have putative 
hypoxia-responsive elements, which suggests that they 
are HIF-1 responsible genes (Goto et al., 2013).

Hypoxic conditions induce hif-1α transcription in the 
hypoxia-tolerant mole rat Spalax. Even in normoxia, 
Spalax has 2-times higher levels of hif-1α mRNA than 
found in the sensitive to the hypoxia rat Rattus, which 
enable successful responses to hypoxia (Shams et al., 
2004).

These examples of hif-1 mRNAs accumulation under 
normoxia in the otherwise evolutionarily distant organ-
isms imply that this way of accommodation to changes 
of oxygen concentrations is conserved among animals. 
Of note, hypoxia and body temperature interact mark-
edly in the regulation of HIF-1 function. As was shown 
in a poikilothermic fish crucian carp Carassius, the activ-
ity of HIF-1 increases at low temperatures (Rytkönen et 
al., 2007).

Aside from parasitic invertebrates, also freshwater and 
marine invertebrates experience hypoxic conditions pe-
riodically in the intertidal zones. In the early phase of 
hypoxia, the bivalve Mytilus redox balance is sustained 
due to the formation of opines from pyruvate. After 
changing conditions to aerobic, the opines are reoxidized 
(Grieshaber et al., 1994). Opine formation takes place in 



Vol. 68       469Amoeba-bacteria metabolic interaction and macrophages

the cytosol; it is a fermentation pathway in which pyru-
vate is condensed with arginine, alanine, or glycine by the 
dehydrogenase that reduces the Schiff base with NADH 
derived from glycolysis. As a result, iminoacid derivatives 
(opines) and NAD are produced. Regenerated NAD can 
be used for oxidative reactions. Various marine inverte-
brates, even the most primitive, use opine pathways (ref. 
in Müller et al., 2012). The amount of ATP generated 
by these pathways is equal to the amount produced dur-
ing lactate formation, i.e. two moles of ATP per mole of 
glucose.

mRNAs of hif-α and phd show the most intense ex-
pression in Mytilus gills. Both of them were found to be 
transcriptionally regulated under short-time air exposure. 
Also, HIF-α and PHD proteins were modulated in a 
time-dependent manner with a tendency equal to mRNA 
expression patterns. This suggests an essential role of 
HIF-α and PHD in the hypoxia tolerance in marine bi-
valves (Giannetto et al., 2015). Under prolonged anaero-
biosis, malate is converted to fumarate in Mytilus, like in 
anaerobically living parasitic nematodes. Electrons are 
transported from NADH via complex I, rodoquinone, 
fumarate reductase to fumarate, resulting in succinate 
production (Tielens & van Hellemond, 1998). Complex I 
pumps protons from the matrix into the intermembrane 
space, which allows mitochondrial ATPase to produce 
ATP. Succinate is either excreted as the end-product or 
may participate in the two mitochondrial ways provid-
ing additional ATP through substrate-level phospho-
rylation with two end-products, acetate or propionate 
(ref. in Müller et al., 2012; Zimorski et al., 2019). Suc-
cinate, acetate, and propionate together with alanine and 
opines are the major end products of anaerobic energy 
metabolism both during repression and during regular 
physiological activity in the majority of free-living ma-
rine invertebrates, like in parasitic nematodes (Müller et 
al., 2012; Zimorski et al., 2019). Aerobic and anaerobic 
animal lineages do not differ in terms of genes and en-
zymes involved in the generation of energy. Only the oc-
currence of rhodoquinone looks to be limited to animals 
that change their habitat to anaerobic.

The reduction of fumarate through the complex II 
under hypoxic conditions has its analog in the betapro-
teobacteria Rhodoferax fermentans. The complex II of R. 
fermentans and fumarate reductase located in mitochondria 
of facultative and anaerobic eukaryotes probably evolved 
independently (Miyadera et al., 2003). This is supported 
by the finding that the pathway for rhodoquinone bio-
synthesis in bacteria and some protists is different from 
that in Caenorhabditis elegans and parasitic helminths (Sali-
nas et al., 2020).

Hypoxia enhances HIF-1α at both mRNA and pro-
tein levels in immortalized human renal proximal tubular 
epithelial cells (HK-2 cells) (Chen et al., 2016). Reduction 
of fumarate to succinate takes place in kidney proximal 
tubule cells, and the resultant succinate is accumulated 
(Weinberg et al., 2000). Also in cancer cells, succinate, 
fumarate, and malate were found in greater concentra-
tions than in healthy tissues (Hirayama et al., 2009). Lack 
of glucose and oxygen that imitates the tumor microen-
vironment, causes a decrease in the SQR activity and an 
increase in the FRD activity of complex II. These chang-
es in activity are considered to be an effect of the flavo-
protein subunit phosphorylation. Thus, complex II may 
act as a fumarate reductase in mammalian cells adapting 
to a hypoxic environment (Tomitsuka et al., 2009).

The unity of anaerobic energy metabolism in virtually 
all major lineages of eukaryotes indicates a single origin 
and common ancestry of the involved genes, that can 

be traced back to their common ancestor (Müller et al., 
2012).

Hematopoiesis is affected by HIFs

Many physiological processes in developing mam-
malian embryos proceed in low oxygen concentrations 
prevailing in the uterus. Hypoxia controls the develop-
ment of the placenta both through HIF-1α and HIF-
2α (Cowden et al., 2005). The likely consequence of a 
low oxygen concentration (between 1 and 5 percent) in 
the uterus (Okazaki & Maltepe, 2006), is the stabiliza-
tion of HIFα, that induces expression of Vegf (vascular 
endothelial growth factor) leading to vascular growth to 
provide blood and nutrients for developing tissues (ref. 
in Imanirad & Dzierzak, 2013). Hematopoietic and vas-
cular systems develop in parallel. Hypoxic hematopoietic 
tissues of early and mid-gestation mouse embryos show 
expressing HIFs and HIFs downstream targets. Both the 
development and function of hematopoietic progenitor/
stem cells depend on HIFs. In adults, hematopoietic 
stem cells are maintained in the hypoxic microenviron-
ment that is important for regulation their quiescence. 
This may be a remnant feature of the hypoxic conditions, 
in which they were generated in the embryo (Imanirad 
& Dzierzak, 2013). Genetically modified embryonic stem 
mouse cells (ES) show that HIF-1α is required for the 
induction in response to hypoxia of 13 genes encoding 
glucose transporters and glycolytic enzymes (Iyer et al., 
1998; Ryan et al., 1998).

In wild-type ES cells, lack of glucose caused induc-
tion of Vegf mRNA without induction of HIF-1α pro-
tein. Although under hypoxia overall protein synthesis is 
diminished to preserve ATP, translation of both HIF-1α 
and VEGF, crucial for the hypoxic response, is contin-
ued due to initiation of translation by internal ribosomal 
entry site (ref. in Liu & Simon, 2004)

In cancers, enhanced cellular proliferation gives rise to 
greater O2 use and hypoxia. Most common human can-
cers show overexpression of HIF-1α. To adapt to a hy-
poxic environment, neovascularization and increased gly-
colysis in solid tumors take place. HIF-1 causes an en-
hanced transcription of genes encoding VEGF and gly-
colytic enzymes as well as glucose transporters (Zhong 
et al., 1999). Due to the activation of HIF-1, tumor cells 
can produce their own energy, becoming less reliant on 
nutrient supply to the tumor.

CONCLUSIONS

Genes of the enzymes catalyzing reactions of glyco-
lysis, and the citric acid cycle are present in bacteria, ar-
chaea, and eukaryotes. Metabolic pathways, producing 
nutrients and energy, can be traced from protozoans 
to mammals. Also, regulation of these pathways based 
on oxygen availability and energy levels has a surpris-
ingly ancient evolutionary history and is similar both in 
yeast and animal cells. The metabolism specific for ac-
tivated immune cells of vertebrates has the beginnings 
in amoeba cells infected with bacteria. Bacteria impose 
their metabolic demands for survival and reproduction 
on the host cells similarly in macrophages and amoebas. 
This strategy, crucial to sustaining a species, led to the 
preservation of these metabolic regulations in organisms 
phylogenetically as distant as protozoans and vertebrates 
(Table 1). The glucose availability influences the energy 
charge of the cell. Both in yeast and mammalian cells, 
high AMP levels reflecting low energy charge activate ki-
nase AMP and its yeast orthologue (SNF1) resulting in 
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inhibition of anabolic processes. In macrophages, cata-
bolic processes enhanced by AMPK activity support an-
ti-inflammatory functions. The transcription factor HIF 
induces a set of genes that activate anabolic processes. 
It promotes glycolysis, biosynthesis, and antioxidant de-
fense against pathogens in inflammatory macrophages. 
Because AMPK and HIF-1 are regulated by glucose 
levels and oxygen concentrations respectively, they are 
indispensable to fundamental processes such as cell mi-
gration, or embryogenesis occurring in all multicellular 
eukaryotes.
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