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We present here an alternative for two-promoter sys-
tems ensuring highly diverse expression of several genes 
from a single promoter. This approach assumes an intro-
duction of a deletion mutation into an A/T homopoly-
meric run in a gene’s proximal part, and employs the 
transcriptional slippage mechanism for insertion-de-
pendent reinstatement of the proper reading frame by 
the T7 RNA polymerase.
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During the transcription process, in many regions of 
long homopolymeric poly(A) or poly(T) sequences a 
phenomenon of insertion or deletion of one or more 
nucleotides might occur (transcriptional slippage, Atkins et 
al., 2016). Programmed transcriptional slippage always 
occurs in well-defined homopolymeric sequences of 
some genes and contributes to the formation of an ad-
ditional alternative protein that is essential for the cell 
function. This happens with high efficiency, and has a 
specific one-directional effect (either insertion or de-
letion [InDel] of a nucleotide), which is often ensured 
by the presence of additional second-order DNA struc-
tures that are necessary to make this process more likely 
(Penno et al., 2015). In case of some groups of genes 
(e.g. IS transposases) slippage is absolutely necessary for 
formation of the correct and functional protein (Baranov 
et al., 2005; Liu et al., 2018). The nature of the non-pro-
grammed transcriptional slippage is different. It is mainly 
related to the intrinsic property of the RNA polymer-
ase (RNAP), which under certain conditions (long A/T 
homopolymeric sequences) may introduce random and 
two-directional InDel errors, contributing to an increase 
in mRNA polymorphism of a given gene (Larsen et al., 
2000; Tamas et al., 2008; Wagner et al., 1990; Wons et al., 
2015), with changes in the primary reading frame (InDel 
frameshift). This leads to production of altered forms of 
proteins (Schwarz et al., 2021; Wons et al., 2015; Rockah-
Shmuel et al., 2013). Such a mechanism turns out to be 
beneficial in case of genes with a single InDel mutation, 
as it can “repair” the mRNA sequence (including rein-
statement of the correct reading frame) while keeping 
the gene’s DNA sequence mutated (Gordon et al., 2013; 
Koscielniak et al., 2018; Rockah-Shmuel et al., 2013; Ta-

mas et al., 2008; Wernegreen et al., 2010; Wons et al., 
2015).

Many methods based on various protein overpro-
duction systems are focused on efficient expression of 
a desired gene that assumes fidelity and reproducibility 
of this process. In the case of co-expression, employ-
ment of two different expression systems controlled in-
dependently is most widely used, leading to varied co-
expressed protein proportions. Alternatively, usage of the 
same type of a promoter results in a balanced and equal 
level of both genes’ expression (Novy et al., 2002). Here, 
we propose a novel approach to achieve a highly differ-
ent expression level of two or more genes from a single 
controllable promoter. The method presented takes ad-
vantage of a very effective and commonly used bacte-
riophage T7 expression system. A reduction in protein 
production is achieved by introduction of a single nucle-
otide deletion (frameshift mutation) within the polyA/T 
sequence of the proximal part of a given gene. Reinstate-
ment of the proper reading frame is insertion-dependent 
and employs transcriptional slippage mechanism of the 
T7 RNAP. This enzyme is highly capable of transcrip-
tional slippage on such sequences, especially by nucleo-
tide insertion (Koscielniak et al., 2018; Wons et al., 2015; 
Wons et al., 2018), and what is important, in contrast to 
the host polymerase, T7 RNAP generated expression 
manifests its intrinsic resistance to transcriptional polar-
ity in the absence of T7-specific terminators (Chevrier-
Miller et al., 1990). Feasibility of the proposed approach 
is demonstrated here with combination of tandem genes: 
mboIIM2 and gfp (transcriptional fusion, each gene pos-
sesses its own Shine-Dalgarno sequence), encoding the 
DNA methyltransferase M2.MboII and GFP proteins, 
respectively, both as inframe (WT) and frameshifted (FS) 
variants (Fig. 1). The four combinations of tandem genes 
were introduced into the pET24a plasmid vector (No-
vagene) and were constructed as follows: WT or FS gfp 
gens were subcloned from pBADmingfpA60 and pBAD-
mingfpA5-1 as EcoRI-digested DNA fragments (Wons et 
al., 2018) and inserted into the EcoRI site of pETmboI-
IMB.3 (carrying mboIIM2 WT gene, Furmanek-Blaszk et 
al., 2009) or pETmboIIM2FS vectors (site-specific mu-
tagenized variant of mboIIM2 with deletion of the 18th 
thymine residue, using the PfuPlus DNA polymerase 
in a PCR reaction – Eurx-Gdansk, Poland) (Fig. 1). All 
plasmids were introduced into Escherichia coli ER2566 
strain which hosts the T7 RNA polymerase (NEB Ip-
swich, USA). After 1 h induction with 1 mM IPTG, the 
effects of diverse levels of expression were assayed both, 
qualitatively and quantitatively (at least in the case of 
GFP protein) (Fig. 2). For GFP analysis, measurement 
of cell fluorescence and immunodetection of the protein 
by western blotting were used (Wons et al., 2018). For 
M2.MboII, an in vivo methylation test was utilized (DNA 
protection against cognate MboII endonuclease cleavage) 
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and immunodetection was determined by western blot-
ting (Wons et al., 2015). Quantification of GFP fluores-
cence of a 400 μl cell culture sample (Varioskan Flash 
Spectral Scanning Multimode Reader spectrophotometer 
– Thermo Scientific, with excitation and emission wave-
lengths of 488 and 510 nm, respectively) (Fig. 2A) is 
proportional to immunodetected GFP products (mouse 
monoclonal anti-GFP (B-2) antibodies – Santa Cruz Bio-
technology, Fig. 2B) (Wons et al., 2018). As can be seen, 
low level of gfp expression was obtained even when FS 
gfp variant was employed, with no effect of the upstream 
mboIIM2 gene’s status. Similarly, M2.MboII production 
was immunodetected (Fig. 2D, rabbit polyclonal anti-
M2.MboII) and the enzyme’s activity was determined as 
follows: plasmid DNA with 18 MboII sites was isolated 
from bacterial cells carrying appropriate expression plas-
mids and then treated with cognate MboII restriction 
endonuclease (Wons et al., 2015) (Fig. 2C). All plasmids 
from induced cells were protected against endonuclease 
cleavage, even though M2.MboII was not detected by 
immunodetection in the FS mboIIM2 samples. Again, this 
demonstrates that a low level of WT mboIIM2 expression 
took place even in the FS variant and this was not af-
fected by the gfp gene’s status.

In summary, we demonstrate here that transcriptional 
slippage is a suitable tool for restoring the WT reading 
frame in a gene containing a frameshift mutation and 
obtaining a low level of its expression, while the tandem 
WT/WT variants retain a high level of expression. This 
system can be used wherever the production of a valua-
ble molecular poison can only take place in the presence 
of an antidote that must be removed during purification, 
which always increases the steps in detection and control 
procedures.
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