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Therapeutic genome modification requires precise con-
trol over the introduced therapeutic functions. Cur-
rent approaches of gene and cell therapy fail to deliver 
such command and rely on semi-quantitative methods 
with limited influence on timing, contextuality and lev-
els of transgene expression, and hence on therapeutic 
function. Synthetic biology offers new opportunities 
for quantitative functionality in designing therapeutic 
systems and their components. Here, we discuss syn-
thetic biology tools in their therapeutic context, with 
examples of proof-of-principle and clinical applications 
of engineered synthetic biomolecules and higher-order 
functional systems, i.e. gene circuits. We also present 
the prospects of future development towards advanced 
gene-circuit therapy.
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INTRODUCTION

Since Professor Wacław Szybalski and others pio-
neered stable gene transfer into mammalian cells (Szy-
balska & Szybalski, 1962; Cepko et al., 1984; Neufeld 
et al., 1972), their efforts have been extended in many 
ways. Within the last six decades gene and cell therapy 
have reached significant milestones due to refined viral 
and non-viral nucleic acid delivery (Dunbar et al., 2018; 
Buck et al., 2019; Lai & Wong, 2018; Lostalé-Seijo & 
Montenegro, 2018) and sophisticated therapeutic strate-
gies (Dunbar et al., 2018). However, ongoing challenges 
with complex diseases, such as neurodegeneration (Sun 
& Roy, 2021) or cancer (Flavahan et al., 2017; Dagogo-
Jack & Shaw, 2018), cry out for even more elegant, pre-
cise and quantitative treatment solutions.

How can we proceed to meet such superior demands? 
We should start by rephrasing how we describe biologi-
cal systems. Let us consider cellular processes from the 
engineering perspective and postulate several hypotheses. 
First, protein and RNA synthesis in each cell are gov-
erned by a complex, dynamic and modular network of 
mutually-controlled expression regulators (ER), i.e. tran-
scription factors (TFs), microRNAs, etc. (Fig. 1A). Sec-
ond, this regulatory network (RN) controls metabolic 
processes through products of regulated effector genes. 
Third, the global condition of the RN, delineated by 
protein levels stemming from rate constants, accessible 
TF-binding sites etc., impacts the health and disease of 
cells (Fig. 1A and 1B.I) and tissues. Finally, its dynamic, 
hyperlinked structure enables the RN to act as a cellular 
processing core responsible for receiving and integrating 
signals, propagating them outside to other cells or “mak-
ing decisions” (Fig. 1A) (Balázsi et al., 2011). To illustrate 
the importance of these abstract concepts we will follow 
the differentiation stages of pancreatic β-cells.

NETWORK DYNAMICS IN ACTION - DIFFERENTIATION 
OF PANCREATIC β-CELLS

Found in pancreatic islets, β-cells are the endocrine 
cells responsible for synthesis and secretion of insulin, 
which controls the glucose level in the blood. Pathologi-
cal autoimmune depletion of β-cells leads to insufficient 
insulin release and hyperglycemia in type 1 diabetes. Dif-
ferentiated β-cell transplants can potentially cure type 1 
diabetes and relieve patients from lifelong monitoring of 
glucose levels and insulin injections (Weir et al., 2011). 
However, differentiation of therapeutic, insulin-produc-
ing and glucose-sensitive β-cells in vitro is far from be-
ing simple. Both in vivo and in vitro, β-cell differentiation 
is governed by three master transcription factors: (1) the 
pancreatic duodenal homeobox protein PDX1, (2) the 
neurogenin NGN-3 and (3) the V-maf musculoaponeu-
rotic fibrosarcoma oncogene homologue A, MAFA. Rel-
ative levels of these TFs induce vast changes in the gene 
expression profile and the phenotypic state of differenti-
ating cells. Importantly, the effective transition of endo-
derm progenitor cells into fully mature, glucose-respon-
sive and insulin-producing β-cells requires a well-defined 
temporal pattern of PDX1, NGN-3 and MAFA expres-
sion. First, an increase in PDX1 levels correlates with 
the transition of endoderm cells into pancreatic progeni-
tors. Subsequently, PDX1 expression must decrease si-
multaneously with the upregulation of NGN-1 for pan-
creatic progenitors to enter the endocrine progenitor 
stage. Finally, a secondary increase in PDX1 levels cou-
pled with MAFA upregulation and NGN-1 decline shifts 
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endocrine progenitors into mature β-cells (Pagliuca et al., 
2014; Saxena et al., 2016a; Habener et al., 2005). In the 
healthy pancreas, precise timing of these changes directs 
global gene expression profiles and drives the cell along 
a defined trajectory of sequential differentiation stages 
required to reach the fully mature, insulin-producing 
and glucose-sensitive β-cell state. However, governing 
the same precise cascade of events in vitro by applying 
growth factors and hormones without direct TF control 
is particularly difficult (Pagliuca et al., 2014), highlighting 
the need for alternate approaches.

DISRUPTION IN THE NETWORK – PATHOLOGY 
DEVELOPMENT

Precise control over levels of expression regulators is 
critical, but what happens when it is compromised? The 
badly timed activation of ERs and their disproportional 
or noisy expression can cause various cell types to en-
ter pathological states beyond their normal capabilities 
to maintain homeodynamics. For instance, imbalance be-
tween the levels of Raf kinase inhibitory protein (RKIP) 
and metastasis activator BTB And CNC Homology 1 
(BACH1) can lead to metastatic transitions in cancer due 
to increased expression noise and cell heterogeneity (Lee 
et al., 2014; Gómez Tejeda Zañudo et al., 2019). Like-
wise, disrupted levels of chromatin regulators may lead 
to exceedingly restrictive or permissive epigenetic land-

scapes, consequently increasing epigenetic instability and 
stochastic oncogene activation (Flavahan et al., 2017). 
Efficient therapeutic effect requires a precise counterbal-
ance to such pathological disruptions to bring expression 
profiles back to their normal physiological state (Figure 
1B.II). Yet, conventional approaches of gene therapy 
face substantial limitations in this respect.

STRUGGLES OF GENE AND CELL THERAPY

Gene transfer lies at the foundation of gene therapy. 
Successful non-viral gene transfer depends on pharma-
cokinetics and cellular uptake of delivery agents followed 
by release of encapsulated nucleic acids into cells. These 
processes are inherently stochastic and contribute to the 
high heterogeneity of responses within the targeted cell 
population (Leonhardt et al., 2014; Schwake et al., 2010; 
Ligon et al., 2014). Similarly, viral delivery and natu-
ral viral infection involve substantial cell-to-cell varia-
tion (Snijder et al., 2009; Zhu et al., 2020; Mikkola et al., 
2000; Brandt et al., 2020; Russell et al., 2018). Regard-
less of these limitations, even ideal, fully controlled gene 
transfer would allow for overexpression of only a few 
transgenes with limited command over the exact levels 
and kinetics of the expressed proteins. Such shortcom-
ings are unacceptable and potentially harmful upon treat-
ments requiring a narrow therapeutic window, precise 
kinetic control (Del Vecchio et al., 2017) or those that 

Figure 1. The dynamic regulatory network (RN) constitutes a processing core, driving cell functions. 
(A.) Master regulators (i.e. transcription factors) controlling expression of multiple functional genes constitute network hubs. The protein 
expression levels together with reaction rates and network motifs define the global state of the RN that underlies the physiological cell 
states (represented as valleys in the landscape). The dynamic nature of RN function allows cells to sense internal and external signals, 
process them, communicate with other cells and shift into other global states according to the circumstances. (B.) I. If the cell enters a 
state beyond its homeodynamic capabilities (yellow region of the landscape) then it develops pathological behaviors and cannot adopt 
normally to external and internal cues. II. A synthetic gene circuit, with defined input, output and regulation points, can be incorporated 
into the native RN structure. When integrated efficiently, such a gene circuit can sense the cues characteristic to pathological states, in-
tegrate them and precisely tune crucial elements within native RN. Such changes bring the global expression profile back to its normal 
state.
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involve engineered therapeutic cells. For instance, T-cell 
immunotherapy can cause adverse effects, such as cy-
tokine release syndrome (Lim & June, 2017; Fitzgerald et 
al., 2017) due to disproportionate activation of modified 
T cells.

SYNTHETIC BIOLOGY – BIOMOLECULAR TOOLS

The advent of synthetic biology opened new perspec-
tives for improved gene and cell therapy. Advances in 
genetic and biomolecular engineering allow the design 
of new, synthetic biomolecules that receive and transmit 
signals within living cells, triggering controlled gene ex-
pression and metabolic reactions. Newly developed func-
tional classes of biomolecules and their fragments range 

from chimeric transcription factors (Garg et al., 2012; 
Thakore et al., 2016; Bashor et al., 2019), synthetic re-
ceptors (Morsut et al., 2016; Porter et al., 2011), RNA- 
(Culler et al., 2010; Paek et al., 2015; Green et al., 2014), 
CRISPR-Cas- (Thakore et al., 2016; Esvelt et al., 2013) 
and light-induction-based molecular switches (Guinn & 
Balázsi, 2019; Müller et al., 2015; Strickland et al., 2010), 
localization (Spiltoir et al., 2016; Niopek et al., 2016, 
2014) and stability (Finley, 2009; Bonger et al., 2014) 
control factors among others (Bugaj et al., 2013; Mishra 
et al., 2014; Fux et al., 2021). A prominent example of 
synthetic biomolecules in action is within chimeric anti-
gen receptor (CAR)-engineered T cells (Wu et al., 2020). 
In general, CARs constitute modified T cell receptors 
(TCR), where the engineered variable domain of a hap-
ten-specific antibody replaces that of the TCR-α and/or 
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Figure 2. Examples of synthetic circuit geometries. 
(A.) Negative autoregulation transcriptionally coupled with an effector gene (II.) decreases the expression heterogeneity and linearizes 
the does-response within the cell population when compared to a dual-promoter no-feedback system (I.). The bicistronic gene in II. con-
tains a sequence of self-cleaving linker peptide (P2A) allowing effector and regulator to split shortly after translation. (B.) The dynamics 
of two mutual, signal-dependent repressors allows bistability, with one or two attractors dependent on the levels of signals deactivating 
each of the repressors. Such bistability works like a toggle switch where the increase in one antagonistic signals trigger the correspond-
ing stable state (I. Green signal prevails, II. Red signal prevails. The grey area represents the range of inducer levels where both stable 
states coexist).C. The same molecular signal activates two transcription factors, a repressor and an activator, that regulate the same ef-
fector gene. The activator has high sensitivity to the signal and low affinity to the target, causing an increase in effector concentration 
at low signal levels (I.). Contrarily, the low-signal-sensitivity and high-target-affinity repressor dominates over the activator and causes a 
decrease in effector concentration at high signal levels (II.). Such a system allows only intermediate-level signals to propagate through 
and constitutes a mid-range signal filter.
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-β chains (Goverman et al., 1990; Gross et al., 1989), ena-
bling cancer cell targeting. Such solutions exploit antigen 
specificity to recognize cancer cells, thus extending the 
spectrum of T cell activation beyond the capabilities of 
major histocompatibility complex (MHC). Development 
of CARs was a breakthrough in efficient T cell immuno-
therapy that is currently in clinical practice (Maude et al., 
2015; Holzinger et al., 2016; Lundh et al., 2020; Lanitis 
et al., 2020). However, even these advanced engineered 
therapeutics suffer from the adverse effects of transgene 
overexpression, cell-cell variability, and the lack of con-
textual control of expression levels.

SYNTHETIC BIOLOGY – NEW ADAPTIVE CELL 
FUNCTIONS THROUGH SYNTHETIC GENE CIRCUITS

Recent endeavors enabled new directions towards 
precise and adaptive therapeutics. Largely, synthetic bio-
molecules are becoming highly modular and amenable to 
assemble into higher-order functional systems. Such sys-
tems, comprising signal transducers, receptors, mutually- 
and self-controlled ERs and their effectors, constitute 
synthetic gene circuits (SGC) with well-defined input, 
output and regulation characteristics. When integrated 
into the genome, SGCs interface with the native regu-
latory network at defined junction points and provide 
new sense-and-response capabilities to living cells. These 
new functions can be tuned by activating transgenic ex-
pression adaptively, only in specific cell types and cell 
states or in dose-responsive manner, hence with precise 
quantitative control. Importantly, the functions of SGCs 
and their building blocks are becoming more orthogonal 
relative to each other and the native cellular apparatus 
(Briner et al., 2014; Garg et al., 2012; Esvelt et al., 2013; 
Thakore et al., 2016; Green et al., 2014; Roybal et al., 
2016; Stanton et al., 2014; Szenk et al., 2020), potentially 
reducing undesired side effects. Moreover, computer-aid-
ed design and mathematical modeling of reaction kinet-
ics allow researchers to predict and fine-tune the func-
tions of SGCs. Likewise, analyzing the local kinetics and 
the global structure of the native RN can reveal optimal 
control points to maximize therapeutic effect of SGCs 
(Gómez Tejeda Zañudo et al., 2019; Zañudo et al., 2017). 
Precisely-defined and complex SGC functions include 
Boolean logic gates (Leisner et al., 2010), gene oscilla-
tors (Stricker et al., 2008; Toettcher et al., 2010; Elowitz 
& Leibier, 2000), controllable memory buffers (Weber et 
al., 2007; Ajo-Franklin et al., 2007), counters (Friedland et 
al., 2009), and spatiotemporal pattern generators (Cao et 
al., 2016). Signal-sensitive, self-repressing TFs reduce the 
expression noise of co-expressed effector proteins, lead 
to linear dose-response and more uniform expression 
profiles within cell populations when compared to their 
non-self-regulated equivalents (Fig. 2A) (Guinn & Ba-
lázsi, 2019; Nevozhay et al., 2009; Nevozhay et al., 2013). 
Two signal-dependent, mutually repressing TFs form a 
toggle switch that could serve as a bistable long-term 
memory unit (Fig. 2B) (Kramer et al., 2004; Gardner et 
al., 2000).

GENE-CIRCUIT THERAPY – PROOF-OF-PRINCIPLE

Many of these and other gene circuit designs have al-
ready demonstrated their practical utility. For instance, 
combining two antagonistic gene regulators of differ-
ent target affinity and signal sensitivity (high sensitivity, 
low affinity activator and low sensitivity high affinity re-
pressor) acting on the same effector gene constitutes a 

mid-range-signal filter (Fig. 2C) (Greber & Fussenegger, 
2010). A lineage-control gene circuit based on a vanil-
lic-acid-driven mid-range-signal filter succeeded in driv-
ing pancreatic β-cell differentiation by controlling the 
desired cascade of PDX1, NGN3 and MAFA expres-
sion. Transient transfection of human induced pluripo-
tent stem cells (hIPSCs) with the lineage-control circuit 
yielded mature beta-cell differentiation with unparalleled 
efficiency, largely exceeding the abilities of prior meth-
ods (Saxena et al., 2016a). On-switches responding to 
low molecular weight drugs combined with CARs enable 
tunable, spatiotemporal control over activation of engi-
neered T-cells in attempts to restrain the adverse effects 
of gene overexpression on CAR T-cell based immuno-
therapy (Wu et al., 2015). Moreover, CAR-T cell thera-
py can be augmented by engineering tumor cells in situ 
to gain an immunomodulatory function (Nissim et al., 
2017). SGCs can introduce novel functions into many 
other engineered therapeutic cells. Grafts of engineered, 
gene-circuit-bearing cells were instrumental in treating 
mouse models of obesity, metabolic syndrome, Graves’ 
disease and gout (Rössger et al., 2013; Ye et al., 2013; 
Kemmer et al., 2010; Saxena et al., 2016b).

GENE-CIRCUIT THERAPY – CHALLENGES AND HOW TO 
FACE THEM

While promising, synthetic gene circuits still have 
many obstacles to overcome on their way to the clinic. 
The biggest shortcomings in designing efficient gene-cir-
cuit therapy for systemic applications are adverse off-tar-
get effects. Like for conventional gene therapy, effective 
strategies require specific targeting into the cells of inter-
est, avoiding cytotoxic effects and adverse immune sys-
tem activation. Most importantly however, SGCs need to 
be incorporated into safe genomic loci that facilitate full 
functionality and avoid any unwanted, potentially onco-
genic genome alterations (Markstein et al., 2008; Liebert 
& Ellis, 2005; Russell & Grompe, 2015; Bestor, 2000). 
All these considerations demand precise and selective 
delivery and integration strategies. The CRISPR-Cas9 
system offers a tempting alternative over semi-random 
viral genome editing. Programmable integration into pre-
defined chromosome regions, improved specificity (Brin-
er et al., 2014; Kocak et al., 2019) and ever-expanding 
modes of genome editing by different classes of CRIS-
PR-Cas9-derived editing agents (Anzalone et al., 2020) 
are the main advantages of the system. However, reports 
on off-target insertions caused by CRISPR-Cas9 system 
and immunogenicity of CRISPR-Cas9 components re-
main concerning and need to be carefully addressed (An-
zalone et al., 2020; Zhang et al., 2015; Dai et al., 2016). 
Independently of genome editing, systematic studies have 
revealed sets of human “safe harbor sites” (SHS), that 
are genomic regions with minimal potential for transgene 
deactivation and unwanted deregulation of native regu-
latory network upon transgene integration (Sadelain et 
al., 2012; Papapetrou & Schambach, 2016; Pellenz et al., 
2019; Gaidukov et al., 2018). The exploration of the full 
therapeutic potential of SHSs is still ahead. Moreover, 
the use of orthogonal site-specific recombinases, like 
Flp or Cre, combined with CRISPR-Cas9 methods can 
further improve the site-specificity of construct inser-
tion. For example, CRISPR-Cas9 could integrate prereq-
uisite recognition sites of a site-specific recombinase (a 
so-called “landing pad”) into the SHS, allowing subse-
quent modification through recombinase-mediated cas-
sette exchange (RMCE) (Duportet et al., 2014; Ordovás 
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et al., 2015). Since site-specific recombinases do not cre-
ate double strand breaks in chromosomal DNA and are 
restrictively specific to their own recognition sites, these 
approaches are promising to minimize off-target inser-
tions (Grindley et al., 2006; Ma et al., 2014). Further ad-
vance are prospectively possible by using transient “inte-
grator” gene circuits where the expression of CRISPR-
Cas9 machinery and recombinase of choice is adjusted 
to achieve maximal integration efficiency without adverse 
side effects. Other extensions can include “safety switch” 
designs (Kiani et al., 2015) that limit the integration only 
to the cells of interest, supporting current methods of 
targeted gene delivery (Lostalé-Seijo & Montenegro, 
2018). Other approaches, such as self-replicating RNA 
circuits and non-integrative viral vectors, are also prom-
ising (Wagner et al., 2018; Schlaeger et al., 2015)

CONCLUSION

As Professor Wacław Szybalski predicted in the 1974 
proceedings book “Control of Gene Expression” (Szy-
balski, 1974) we have entered into the era of engineered 
and synthetic biology. Examples and strategies presented 
in this review constitute the first steps in the new direc-
tion of engineered therapeutics and gene circuit therapy, 
sparking new anticipation and hope. For instance, the 
current expansion of the field of protein design and the 
progress in understanding of dynamic gene regulation 
are highly promising for future treatment strategies. Yet, 
there is still much to be done.
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