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Objective: This study aimed to identify novel prog-
nostic biomarkers of pancreatic ductal adenocarci-
noma (PDAC) using bioinformatics analyzes. Methods: 
Clinical information, microRNAs (miRNAs), and genes 
expression profile data from PDAC cases were down-
loaded from the Cancer Genome Atlas (TCGA) data-
base. The potential prognostic risk miRNAs and genes 
were screened using the Elastic Net Cox proportional 
risk regression hazards (EN-COX) model. The receiver 
operating characteristic (ROC) curve and the Kaplan-
Meier (KM) curve were used to identify miRNAs and 
genes of significant prognostic risk. Furthermore, sig-
nificant prognostic risk miRNAs were functional en-
richment analyses based on their target genes. Fur-
thermore, the survival analyzes of the hub genes were 
validated through OncoLnc. Results: Complete clinical 
records and expression data of 797 miRNAs and 19969 
genes from 137 PDAC cases were obtained, of which 
59 potential prognostic risk factors, including 54 
genes and 5 miRNAs, were selected by EN-COX ana-
lyzes. A total of 17 significant prognostic risk markers 
were identified (all P<0.05), including 16 genes and 1 
miRNA (miRNA-125a). The miRNA-125a target genes 
were found in the MiRWalk database and the function 
enrichment analyzes were performed in the the DA-
VID website. Furthermore, according to data from the 
Oncomine and Human Protein Atlas (HPA) databases, 
the mRNA and protein level of frizzled class receptor 
8 (FZD8) were overexpressed in pancreatic cancer tis-
sues compared to the corresponding noncancer nor-
mal tissues (P<0.001). However, both glutathione S-
transferase mu 4 (GSTM4) and inducible T cell costim-
ulator ligand (ICOSLG) were negatively regulated in 
tissues of pancreatic cancer tissues (P<0.001). Finally, 
survival analysis was used to validate these factors by 
the OncoLnc database, and the results revealed that 
overexpression of ICOSLG was associated with a better 
prognosis (P=0.025). Conclusions: This study showed 
that the expression levels of FZD8, GSTM4 and ICOSLG 
were significantly different between PDAC and non-tu-
mor tissues, especially ICOSLG, which could be a prog-
nostic indicator and therapeutic target for PDAC.
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INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC), which 
represents more than 90% of pancreatic cancer and is 
the most common pathological type of pancreatic ad‑
enocarcinoma (PAAD), is one of the most concerned 
malignancies due to poor diagnosis and limited treat‑
ment (Parrasia et al., 2021). According to the statistics 
of America, 5700 cases were newly diagnosed with 
pancreatic cancer in 2020 and 447050 cases died from 
it (Siegel et al., 2020). Lacking obvious early symptom 
and specific tumor screening, PDAC is not diagnosed 
until the disease is at an advanced stage presenting lo‑
cal nerve and vascular invasion and metastasis to dis‑
tant sites (Yang et al., 2021). In most patients, PAAD 
is not resectable after diagnosis. According to the Na‑
tional Institutes of Health statistics (NIH), the 5‑year 
survival rate for patients with PAAD is only 10.8% 
based on cases of PAAD‑associated mortality between 
2011 and 2017 (https://seer.cancer.gov/statfacts/
html/pancreas.html). Therefore, the exploration of ef‑
fective prognostic markers may provide new insights 
into the predictive outcome of PDAC.

It is well known that most malignancies are gener‑
ated by random accumulation of massive genetic and 
epigenetic aberrations, and the prognostic and thera‑
peutic implications associated with these aberrations 
are becoming more and more crucial (Hatziapostolou 
and Iliopoulos, 2011). Many previous studies have 
confirmed the involvement of abnormal gene expres‑
sion in PDAC, and alteration of these gene expres‑
sions can act as indicators for diagnosis, treatment, 
and prognosis evaluation (Peng et al., 2019). For ex‑
ample, the mutation of the viral oncogene homolog 
gene of Kirsten rat sarcoma (KRAS) occurred in more 
than 90% of cases of PDAC (Jonckheere et al., 2017). 
Some studies revealed that the KRAS gene mutation 
was significantly associated with tumor stage, liver 
metastasis, and median survival time, and therefore 
it may be used for the detection of PDAC (Waters 
& Der, 2018, Fan et al., 2018). Pathogenic mutations 
in the breast cancer susceptibility gene (BRCA) were 
identified in 4.6% of a large cohort of clinic patients 
(Holter et al., 2015). Furthermore, mothers against 
decapentaplegic homolog 4 (SMAD4) deficiency also 
accelerated the development of PDAC, which works 
to block the progression of KRAS‑initiated neo‑
plasms (Yokose et al., 2020). According to a research, 
78 % of pancreatic tumors have abnormalities at the 
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G1/S checkpoint of the cell cycle (TP53, CNKN2A, 
TP53BP2 mutations) (Bailey et al., 2016). Chung et al. 
found an obvious correlation between the extracel‑
lular high mobility group 1 (HMGB1) and the tumor 
stage and prognosis of PDAC, therefore HMGB1 may 
serve as a marker in the diagnosis and evaluation of 
the prognosis (Chung et al., 2012). Although several 
prognostic risk factors have been identified, sensitivity 
and specificity are not satisfactory. It is still urgent to 
identify the best prognostic biomarkers of PDAC.

Recently, on the basis of the analysis of large inte‑
grated data and bioinformatics, key genes related to tu‑
mor development and prognosis could be identified with 
the widespread popularity of gene chips and the rapid 
development of high‑throughput sequencing technology. 
Potential key genes related to the pathogenesis of PDAC 
were selected by bioinformatics meta‑analysis based on 
the Cancer Genome Atlas (TCGA) database (Ma et al., 
2019). In addition, there are more and more online tools 
favored by researchers because of the powerful function, 
like easy-to-use, no need to install, to analyze the specific 
disease with someone else’s official server.

This study aimed to investigate and identify significant 
prognostic risk markers for the diagnosis and treatment 
of PDAC by bioinformatic analyzes.

MATERIALS AND METHODS

Data sources and preprocessing

In the present study, clinical data from 197 PAAD 
cases were downloaded from the TCGA database 
(https://cancergenome.nih.gov), which included clini‑
cal characteristics, genomic characterization, and high‑
throughput sequence data from cancer patients. Of 
these cases, 150 were PDAC and the rest were other 
pathological types. Among the 150 PDAC cases, 2 cas‑
es were excluded for the lack of accurate data of over‑
all survival time. Finally, there were 148 PDAC cases 
that contained clinical data and survival time data. In 
addition, 183 cases of pancreatic cancer with microR‑
NAs (miRNA) and gene expression profile data were 
downloaded. After data integration, there were a total 
of 137 cases that contained both clinical data and genes 
expression profile data.

The expression values of miRNAs and genes were 
estimated by reads per kilobase of exon per million 
mapped reads (RPKM) (Wagner et al., 2012). Data from 
different samples were normalized by median.

Identification of potential prognostic risk miRNAs and 
genes

Elastic net (EN) is an ideal variable selection meth‑
od that is used to deal with collinearity and effectively 
reduce dimension. Cox proportional regression hazards 
analysis is a semiparametric model designed to analyze 
survival data. Elastic Net Cox’s proportional risk regres‑
sion hazards (EN‑COX) presents the advantages of the 
above method (Wu, 2012). In this study, EN‑COX was 
performed to screen potential prognostic risk genes and 
miRNAs using the glmnet package in R studio (version: 
R 3.63.) (Engebretsen and Bohlin, 2019). The parameter 
was the minimum of λ.

Identification of prognostic risk markers

The receiver operating characteristic (ROC) curve 
was used to evaluate classifiers in bioinformatical ap‑

plications. The cases were divided into two groups ac‑
cording to the cut‑off values. The cases with miRNAs 
or genes expression values below the cut‑off value 
were ranked as low‑expression groups, while the cases 
with expression values above the cut‑off value were 
ranked as high‑expression groups. Based on the data 
obtained from potential prognostic risk genes, miR‑
NAs and the corresponding expression profile data, 
the ROC curves were generated using the pROC 
package in R studio to determine the cut‑off values 
for grouping the cases (Robin et al., 2011).

The Kaplan‑Meier (KM) curve was used for uni‑
variate analysis of survival data. In this study, the KM 
curves were generated using the survival package in R 
studio (Therneau, 2012). Later, the log‑rank test was 
used to determine whether there were significant dif‑
ferences between two groups (P<0.05 was considered 
a significant difference).

Function prediction of prognostic risk miRNAs

The target genes for the prognostic risk miRNAs 
obtained above were searched in the MiRWalk portal 
database (Sticht et al., 2018). The regulatory networks 
were then constructed between selected prognostic 
risk miRNAs and their target genes using Cytoscape 
(http://www.cytoscape.org/), which is an open source 
software used to visualize biological networks and in‑
tegrate data (Doncheva et al., 2019). After that, the 
target genes mentioned above were performed func‑
tional enrichment analyses in DAVID Bioinformatics 
Resources database (Huang et al., 2009). The results 
were plotted as bubble diagrams using the ggplot2 
package in R Studio. P<0.05 was set as the threshold.

Expression of prognostic risk markers in human 
pancreatic adenocarcinoma

Prognostic risk markers were assessed at the RNA 
level of human pancreatic adenocarcinoma samples by 
comparing with paracancer tissues through the On‑
comine database (www.oncomine.org) (Rhodes et al., 
2004), and their protein expression was detected in 
the HPA database (www.proteinatlas.org) (Uhlén et al., 
2015). P<0.05 was considered to be significant differ‑
ence.

Survival analyses of the prognostic risk markers

OncoLnc is a tool to interactively explore survival 
correlations and download clinical data coupled to ex‑
pression data for mRNAs, miRNAs, or long noncod‑
ing RNAs (lncRNAs). OncoLnc contains survival data 
for 8,647 patients from 21 cancer studies performed 
by the TCGA database, together with RNA‑SEQ ex‑
pression for mRNAs and miRNAs from TCGA, and 
lncRNA expression from MiTranscriptome (Anaya, 
2016). By means of OncoLnc, survival difference of 
the prognostic risk markers was validated once more.

RESULTS

Data preprocessing

After normalizing the original TCGA data, the expres‑
sion values of 797 miRNAs and 19969 genes were ob‑
tained in 137 PDAC cases.

https://cancergenome.nih.gov
http://www.cytoscape.org/
http://www.oncomine.org
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Identification of potential prognostic risk genes and 
miRNAs

According to the parameter of λ=0.107, 59 poten‑
tial prognostic risk factors, including 5 miRNAs and 54 
genes, were screened through EN‑COX.

Identification of prognostic risk markers

According to the threshold of P<0.05 of the KM 
curve and AUC>0.6 of the ROC curves, 17 prognostic 
risk markers including 16 genes and 1 miRNA were con‑
sidered significantly correlated with the prognostic risk 
of PDAC patients (Table 1).

Function prediction of prognostic risk miRNAs

miRNA‑125a contained two forms: miRNA‑125a‑
3p and miRNA‑125a‑5p. There were 1982 target genes 
for miRNA‑125a recovered from the MiRWalk data‑
base, while miRNA‑125a‑3p had 1030 target genes, and 
miRNA‑125a‑5p had 1021 target genes. (Fig. 1). There 
were 69 common target genes between them. Besides, 
ICOSLG, SPATA2, and GSTM4 were prognostic risk 
genes and miRNA‑125a target genes, while ICOSLG 
and SPATA2 belonged to miRNA‑125a‑3p target genes, 
and GSTM4 was the miRNA‑125a‑5p target gene. The 
target genes of miRNA‑125a‑3p were mainly enriched 
in the positive regulation of phosphatidylinositol 3‑ki‑
nase signaling (BP), DNA‑directed RNA polymerase II 
(CC), RNA polymerase II activity (MF) and metabolic 
pathways (KEGG) (Fig. 2 and Supplementary Table 
I~IV at https://ojs.ptbioch.edu.pl/index.php/abp/). 
MiRNA‑125a‑5p target genes were mainly enriched in 
phospholipid transport (BP), an integral component of 
the Golgi membrane (CC), protein binding (MF) and 
the calcium signaling pathway (KEGG) (Fig. 3 and Sup‑
plementary Table V~VIII at https://ojs.ptbioch.edu.pl/
index.php/abp/).

The mRNA and protein levels of FZD8, GSTM4 and 
ICOSLG

In view of the Badea pancreas data set in the On‑
comine database, the mRNA level of frizzled class re‑
ceptor 8 (FZD8) was significantly higher in human 
PDAC specimens compared to paracancer specimens 
(P<0.001), and the para‑cancer specimens (P<0.001), 
and inducible T‑cell costimulator ligand (ICOSLG) was 
significantly down-regulated in pancreatic cancer tissues 
(P<0.001). In view of the logsdon pancreas data set, 
glutathione S‑transferase mu 4 (GSTM4) revealed sig‑
nificantly lower expression in tumor tissues compared to 
the corresponding non‑tumor tissues in mRNA level of 
mRNA (P<0.001).

Table 1. The result of identified prognostic risk markers

Name Optimum cut-off value P-value of the KM curve AUC of the ROC curve

ADRB3 2.412 3.14E-02 0.725

AIPL1 0.580 1.04E-06 0.626

EMR3 4.066 1.01E-03 0.789

FAM196B 1.792 2.72E-02 0.662

FZD8 8.062 3.12E-05 0.604

GATA1 1.070 4.41E-02 0.732

GSTM4 9.103 4.72E-03 0.692

ICOSLG 8.987 3.53E-03 0.837

KRT39 1.060 3.26E-02 0.619

RHO 0.578 2.52E-03 0.606

SCN11A 2.515 9.05E-04 0.768

SLC25A44 9.510 2.81E-03 0.633

SPATA2 8.549 1.35E-02 0.674

TRIM67 3.510 3.08E-02 0.843

TTLL2 1.771 2.38E-03 0.630

ZWILCH
has-mir-125a

8.186
0.183

5.85E-03
3.23E-02

0.640
0.645

KM, Kaplan-Meier; ROC, receiver operating characteristic; AUC, the area under the curve of ROC.

Figure 1. The regulatory network of miRNA-125a and target 
genes.
The yellow rectangle nodes represented miRNA-125a-3p and miR-
NA-125a-5p, and the circular nodes represented the target genes, 
while the green circular nodes represented the prognostic risk 
genes identified in this study.

https://ojs.ptbioch.edu.pl/index.php/abp/
https://ojs.ptbioch.edu.pl/index.php/abp/
https://ojs.ptbioch.edu.pl/index.php/abp/
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Moreover, the protein expressions of FZD8, GSTM4 
and ICOSLG demonstrated similar results in the immu‑
nohistochemical images from HPA database (Fig. 4).

Survival analyzes of prognostic risk markers

With the aid of the OncoLnc web server, the over‑
expression of ICOSLG was obviously associated with a 
better prognosis (P=0.0252). However, the expression of 
FZD8 and GSTM4 was significantly not related to the 
survival time of PDAC (P=0.0652 and 0.573, respective‑
ly) (Fig. 5).

 DISCUSSION

As one of the most lethal cancers worldwide, the 
5‑year survival rate of PDAC patients is only 10.8% in 
the US. Due to poor diagnosis and high malignancy, the 
outcome and prognosis of PDAC still remain poor in re‑
cent decades. PDAC is usually diagnosed in an advanced 
stage with common symptoms including jaundice, pain, 
and weight loss. Most patients with PDAC cannot have 
surgery when diagnosed. As a consequence, it is neces‑

sary to explore new biomarkers to predict the outcome 
of PDAC patients. In this study, 17 prognostic risk 
markers were found, including 1 miRNA and 16 genes. 
The expressions of them were evaluated in pancreatic 
cancer at both the RNA and protein levels, respectively. 
FZD8, GSTM4, and ICOSLG revealed significant differ‑
ential expression in tumor tissues compared to the cor‑
responding non‑tumor tissues. Moreover, ICOSLG was 
obviously associated with the prognosis of PDAC in the 
OncoLnc database.

FZD8 is one of the Frizzled receptors that belong 
to the Wnt ligand family. FZD8 activates the canonical 
Wnt/β-catenin signaling pathway that plays a vital role 
in the development and progression of multiple carcino‑
mas. Li and others (Li et al., 2017) reported that FZD8 
was robustly up‑regulated in bone‑metastastic prostate 
cancer cell lines and tissues, and a high expression lev‑
el of FZD8 was significantly and positively associated 
with progression and bone metastasis. Chen’s findings 
showed that FZD8 promotes gastric cancer invasion and 
metastasis via the β-catenin pathway (Chen et al., 2020). 
Wang and others (Wang et al., 2012) suggested that 
FZD8 may be used as a potential therapeutic target in 

Figure 2. The top functional enrichment results of the target genes of miRNA-125a-3p
The Y-axis on the left revealed the top several functional enrichment results of the target genes. The X-axis indicated the percentage 
of gene involved in (A) Biological Process (BP), (B) Cellular Components (CC), (C) Molecular Function (MF) and (D) KEGG pathway. The 
color represented P Value, and a range from red to blue indicated P Value (lowest to highest, respectively) The size of bubble showed 
genes number involved in BP, CC, MF and KEGG pathway. If the items that meet the criteria were more than 10, only the top 10 were 
displayed.
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lung carcinoma due to its overexpressed expression in 
human lung cancer tissue and cell lines and suppression 
in cancer cell proliferation. This in turn reduced the Wnt 
signaling activity and enhanced the sensibility of lung 
cancer to chemotherapeutics. Additionally, some studies 
revealed a higher expression of FZD8 in breast cancer 
and colorectal cancer compared to their corresponding 
adjacent tissues (Jiang et al., 2015; Xu et al., 2016). It is 
well known that K‑ras mutation occurs in 90% of pan‑
creatic cancer cases. Wang et al. revealed that FZD8 was 
inhibited in K‑ras mutant pancreatic cells. This further 
suppressed the non‑ canonical Wnt/Ca2+ signaling, con‑
tributing strongly to its tumorigenic properties. Resto‑
ration of FZD8 expression in K‑ras mutant pancreatic 
cells demonstrated a decrease in malignant transforma‑
tion (Wang et al., 2015). Our study found that FZD8 
was upregulated in pancreatic cancer and was associated 
with a better prognosis, which was consistent with most 
previous studies, implying that FZD8 mainly activated 
Wnt/β-catenin pathway in pancreatic cancer.

GSTM4 is a member of μ subfamily in Glutathione 
S‑transferases (GSTs) family. GSTs are a group of de‑
toxifying enzymes that catalyze glutathione in conjunction 

with oncogenes, drugs, toxic substances, and products of 
oxidative stress, with the aim of reducing their toxic com‑
bination with cell components. GSTs were divided into 
eight subfamilies which include α (GSTAs), κ (GSTKs), μ 
(GSTMs), ω (GSTOs), π (GSTPs), θ (GSTTs), ζ (GSTZs) 
and membrane‑bound GSTs (MGSTs). It was reported 
that GSTM4 was implicated in tumorigenesis and resistant 
to chemotherapy. Zhuo et al. showed that GSTM4 was 
overexpressed in Ewing’s sarcoma and promoted tumor 
development and chemoresistance by inhibiting cell apop‑
tosis (Zhuo et al., 2014). Barros et al. discovered a higher 
level of GSTM4 expression in human MCF‑1 breast can‑
cer cells, which helped to maintain the reduction status of 
cytochrome C and suppressed cell apoptosis, resulting in 
the chemoresistance of MCF‑1 cells (Barros et al., 2013). 
However, a few studies demonstrated that downregulation 
of GSTM4 in breast cancer cell lines was related to their 
chemotherapeutic resistance (Watson et al., 2007). Further‑
more, compared to well differentiated laryngeal cancer tis‑
sues, poor laryngeal cancer differentiation demonstrated 
reduced GSTM4 expression (Sedat et al., 2010). Unfor‑
tunately, there have been no reports in the literature on 
GSTM4 expression in pancreatic adenocarcinoma yet.

Figure 3. The top functional enrichment results of the target genes of miRNA-125a-5p.
The Y-axis on the left revealed the top several functional enrichment results of the target genes. The X-axis indicated the percentage 
of gene involved in (A) Biological Process (BP), (B) Cellular Components (CC), (C) Molecular Function (MF) and (D) KEGG pathway. The 
color represented P Value, and a range from red to blue indicated P Value (lowest to highest, respectively) The size of bubble showed 
genes number involved in BP, CC, MF and KEGG pathway. If the items that meet the criteria were more than 10, only the top 10 were 
displayed.
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ICOSLG encodes inducible T‑cell co‑stimulator ligand 
(ICOSLG). This belongs to the B7 family and is identified 
as a new kind of molecule on the cell surface. It is usu‑
ally expressed in antigen‑presenting cells such as B lym‑
phocytes, dendritic cells, and macrophagocytes. ICOSLG 
is the only ligand of the inducible co‑stimulator (ICOS) 
that belonged to the CD28 superfamily. Physiologically, 
ICOS is highly expressed in activated T lymphocytes and 
regulatory T cells, and ICOS: The ICOSLG interaction 
promoted the activation and proliferation of T cells and 
the secretion of cytokines. Recent studies revealed that 
the ICOS/ICOSLG signaling pathway was involved in in‑
flammatory responses, autoimmune diseases, and cancers 
(Merrill et al., 2013). Many studies reported that ICOSLG 
was highly expressed in several tumors such as breast can‑
cer, melanoma, and acute myeloid leukemia. Its high ex‑
pression was correlated with progression, immune escape, 
chemoresistance, and poor prognosis of cancers (Nam et 
al., 2015; Martin‑Orozco et al., 2010). Scott et al. found 
that ICOSLG transcription was reduced in myeloma, lead‑
ing to inhibition of its antitumor immunity (Scott et al., 
2015). In this study, we found that ICOSLG is down‑
regulated in PDAC at both RNA and protein levels, and 
high expression of ICOSLG was significantly associated 
with a better prognosis. Nevertheless, there is still a lack 
of other research on the functions of ICOSLG in pancre‑
atic cancer.

When validated in the oncomine and HPA databases, 
miRNA-125a expression was not significantly different 
in PDAC or there was no information on the gene.

Bioinformatics is the field of science developed by the 
combination of biology and information technology. It is 
the computational techniques used for solving biological 
problems. Data problems such as representation (graph‑
ics), storage and retrieval (databases), analysis (statistics, 

artificial intelligence, optimization, etc.) and biology prob‑
lems such as sequence analysis, structure or function pre‑
diction, data mining, etc. Along with the rapid develop‑
ment of the field, there are some issues proposed (Sethi & 
Behera, 2016). First, the bioinformation algorithm is too 
far from maturity: for example, whole exome sequencing 
combined with diseases is used for disease diagnosis or 
prediction, and the false positive rate is too high. Algo‑
rithms are messy, bioinformatics researchers disagree, and 
there are more than a dozen types of sequencing software 
alone. There is no unified standard for difference analysis, 
and the data forms in GEO chips are all different, so the 
results cannot represent accurately predicted phenotypes. 
Second, there are too many uncontrollable factors: from 
sampling to bioinformatic operation, each step in the 
process may result in different results if another person 
operates it. There are even dozens of specifications of 
sequencing instruments, without unified standards. Since 
this was a purely bioinformatic study that lacked clinical 
samples and data to verify our results, our study has cer‑
tain limitations. Therefore, we will collect clinical data and 
conduct laboratory experiments in vivo and in vitro to 
testify to this result. Although their differential expressions 
were confirmed in the Oncomine and HPA databases, the 
specific mechanisms and pathways of FZD8, GSTM4 and 
ICOSLG in pancreatic cancer involved in tumor progno‑
sis should be explored.

CONCLUSION

This study discovered that FZD8, GSTM4, and 
ICOSLG expression levels were significantly associated 
with PDAC by using bioinformatic analyses. Moreover, 
according to the data from the TCGA dataset, these 3 
genes were related to the survival of PDAC patients. 
Furthermore, it revealed that ICOSLG was obviously as‑
sociated with the prognosis of PDAC in the OncoLnc 
database. Therefore, ICOSLG was probably used as a 
prognostic indicator for PDAC.
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Figure 4. Prognostic risk markers expression in human pancre-
atic carcinoma specimens.
(A, C and E) FZD8-GSTM4 and ICOSLG were expressed in normal 
pancreatic tissues and pancreatic carcinoma specimens. Images 
were taken from the Human Protein Atlas online database. (B, D, 
and F) Oncomine data showed that the FZD8, GSTM4 and ICOSLG 
mRNAs were differentially expressed in the normal pancreas com-
pared to the pancreatic tumor (P<0.001), respectively.

Figure 5. Survival analyzes of prognostic risk markers.
Survival curves of FZD8 (A), GSTM4 (B), and ICOSLG (C) Using 
the median expression of genes as the cutoff point, high expres-
sion of ICOSLG was obviously associated with a better prognosis 
(P=0.025) However, the expression of FZD8 and GSTM4 was not 
related to the survival time of PDAC (P=0.065 and 0.573, respec-
tively)
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