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MiR-132-3p inhibits proliferation, invasion and migration of 
colorectal cancer cells via down-regulating FOXP2 expression
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Objective: colorectal cancer (CRC) is a common cancer 
with high mortality. This study aimed to investigate the 
role of microRNA (miR)-132-3p on proliferation, invasion 
and migration of CRC cells. Materials and Methods: qRT-
PCR and Western blot analyses were used to determine 
the expression of miR-132-3p and forking box (FOX) pro-
tein 2 (FOXP2) in CRC cell  line CACO-2. The expression 
of miR-132-3p and FOX was regulated using miR inhibi-
tor and siRNA, and the viability and migration ability of 
the transfected cells were assessed. Cell cycle depend-
ent kinase (CDK) 1, cyclin D1, matrix metalloproteinase 
(MMP)-2 and MMP-9 were detected using Western blots. 
The dual luciferase reporter gene assays were used to 
verify the targeting of miR-132-3p to FOXP2. Results: 
Compared with control cells, FOXP2 and miR-132-3p 
expressions were decreased or increased significantly 
(P<0.05), respectively in CACO-2 cells. Up-regulation of 
miR-132-3p effectively inhibited the proliferation, migra-
tion and invasion of CACO-2 cells, and suppressed the 
expression of FORX2, cyclin-dependent kinase 1 (CDK1), 
cyclin D1, MMP-2 and MMP-9. Luciferase reporter gene 
assays reveled that FOXP2 expression was negatively 
regulated by miR-132-3p. Knockdown of FOXP2 using 
siRNA significantly reduced the proliferation and migra-
tion of CACO-2 cells, down-regulated the expression 
FOXP2 as well as CDK1, cyclin D1, MMP-2 and MMP-9. 
Since FOXP2 is targeted by miR-132-3p, it is likely that 
miR-132-3p-mediated reduction of proliferation and mi-
gration of CACO-2 cells was achieved via reduced trans-
lation of FOXP2 mRNA. Conclusions: miR-132-3p inhib-
its the proliferation, migration and invasion of CRC  cells. 
This is likely achieved via negative regulation of the 
targeted FOXP2 expression. This role may be further ex-
plored for therapeutic applications in CRC.
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INTRODUCTION

Colorectal cancer (CRC) is the third most common 
cancer and the second leading cause of cancer-related 
deaths worldwide with an annual incidence of 1.4 million 
new cases and 694,000 deaths (Siegel et al., 2018; Sung 
et al., 2021). About 15% CRC patients are in metastatic 
stages (stage IV) once diagnosed and the average sur-
vival rate is only 2.5 years (Scholefield et al., 2002). De-

spite the use of various screening and therapeutic meth-
ods based on various prognosis factors such as tumor, 
node, metastasis (TNM) staging, tumor differentiation 
grade, vessel invasion, performance status and biomark-
ers, there are still a great number of therapeutic failures 
and metastasis in CRC patients (Hows et al., 1993). Like 
other tumors, genetic and epigenetic changes in onco-
genes and/or tumor suppressor genes are shown to trig-
ger the occurrence, progression and metastasis of CRC 
(de Rosa et al., 2015). A better understanding of the mo-
lecular mechanisms is crucial to identify new targets and 
to develop new therapeutic avenue for the disease.

After their discovery, micro-RNAs (miRNAs) have 
been shown to play important roles in cancer. One of 
the most important features of miRNAs is that they 
may have multi-targets consisting of up to 200 mRNAs 
in a coordinated manner (Krek et al., 2005). Increasing 
evidence indicates that deregulated miRNAs’ expression 
is often associated with the progression and metastasis 
of CRC. Due to their stability and abundance, miRNAs 
have been proposed as a new class of biomarkers for 
cancers, including CRC (Hayes et al., 2014; Mitchell et 
al., 2008; Yiu & Yiu, 2016). Specific miRNAs are also 
involved in CRC progression and metastasis (Balacescu 
et al., 2018). Since alterations in Wnt/βcatenin, EGFR, 
TGFβ and TP53 signaling pathways are shown to 
change the survival, proliferation, invasion and metasta-
sis of CRC, many studies have been conducted to estab-
lish the miRNAs-mRNA interaction networks related to 
these pathways (Mohammadi et al., 2016; Rahmani et al., 
2018). For example, restoration of miR-152 expression 
was found to inhibit cell proliferation, survival, and mi-
gration through the suppression of AKT-ERK pathway 
in CRC (Ghazanchaei et al., 2018); miR-675-5p targets 
SNAIL and miR-320c targets SOX4, FOXM1, FOXQ1 
to induce epithelial to mesenchymal transition (EMT) in 
CRC (Costa et al., 2017; Vishnubalaji et al., 2016). Re-
cently, miR-375 was found to regulate MMP2 and sev-
eral EMT-associated genes, including SNAIL and that 
downregulation of miR-375 promotes proliferation, inva-
sion and migration of CRC cells (Cui et al., 2016).

Mir-132-3p is found expressed abnormally in gastric 
cancer, osteosarcoma, ovarian cancer and other tumors 
(Li et al., 2018; RWu et al., 2014), affecting the prolif-
eration, invasion and migration of tumor cells. However, 
the expression of miR-132-3p in CRC and its impact 
on CRC are not clear. On other hand, long non-cod-
ing RNA (lncRNA) SNHG5 could sponge miR-132-3p 
in CRC tissue to promote proliferation, metastasis, mi-
gration and to inhibit apoptosis in CRC cells (He et al., 
2020; Zhang et al., 2019). In addition, circRNA dedicator 
of cytokinesis 1 (circ_DOCK1) was also found to silence 
miR-132-3p, resulting in repressed cell growth, migra-
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tion, and invasion of human CRC cell lines (HCT116 
and SW480) (Zhang et al., 2021), suggesting that miR-
132-3p may have a role in CRC. Furthermore, bioinfor-
matics analysis showed that in adenoid cystic carcinoma 
(AdCC), miR-132-3p is a potential regulator and may 
interact with the forkhead box P2 gene FOXP2 (Liu et 
al., 2021), which was recently shown to express abnor-
mally in a number of tumors (Li et al., 2019; Yao et al., 
2018). For example, FOXP2 expression is upregulated in 
triple negative breast cancer (TNBC) and cell lines. Si-
lencing FOXP2 inhibits the growth, invasion and metas-
tasis of TNBC cells in vitro and in vivo (Wu et al., 2018) 
and down-regulation of FOXP2 could lead to reduced 
proliferation and migration of cancer cells via TGFβ/
SMAD signaling pathway (Chen et al., 2018; Qin et al., 
2019; Zhong et al., 2017). FOXP2 is a member of a 
large FOX family of transcription factors with important 
functions in multiple biological processes, such as cell 
cycle control, cell differentiation, proliferation and devel-
opment (Hannenhalli & Kaestner, 2009; Myatt & Lam, 
2007). The human FOX gene family contains at least 43 
members, among them some genes such as FOXA1 and 
FOXM1 are up-regulated in esophageal and lung cancer 
(Katoh & Katoh, 2004). The dysfunction of FOX genes 
can alter cell differentiation, metastasis and progression 
of osteosarcoma (Zhang et al., 2017a). FOXP2 is one of 
the first discovered FOX genes implicated in a speech 
and language disorder and it influences many human 
traits (Nudel & Newbury, 2013). Accumulating evidence 
now indicates that dysregulated FOXP2 may also play an 
instrumental role in oncogenesis (Campbell et al., 2010a; 
Myatt & Lam, 2007; Yan et al., 2015a), but the results 
are still controversial (Zhang et al., 2017b).

In the present study, we aimed to determine the ex-
pression of miR-132-3p in CRC cells, the impact of 
miR-132-3p on cancers biological features such as pro-
liferation, invasion and migration of CRC cells and the 
underlying mechanisms, particularly related to FOXP2. 
The findings would provide insights for developing new 
therapeutic strategies for CRC.

MATERIALS AND METHODS

Cells

Human colorectal cancer cell line CACO-2 and pri-
mary colonic epithelial cells were purchased from Sig-
ma-Aldrich (St Luis, USA) and Cell Biologics (Chica-
go, USA) and cultured in minimum essential medium 
eagle (EMEM, M2279, Sigma-Aldrich) at 37°C in 5% 
CO2 incubator. 

Reagents and equipment

Fetal bovine serum (FBS) and RPMI1640 medium 
were purchased from Hyclone, USA; Trizol reagent, re-
verse transcription kit and PCR kit were purchased from 
Jingmei Biotech, Shenzhen, China; primers were designed 
and prepared by Singon Biotech, Shanghai, China; RIRA 
lysis buffer (cat. no. T1081) was purchased from Solar-
bio, Beijing; antibodies against CDK1, cyclin D1, matrix 
metalloproteinase (MMP)-2 and MMP-9 were purchased 
from Santa Cruz, USA; horseradish peroxidase (hrp)-
conjugated secondary antibodies were purchased from 
Boster Biotech, Wuhan, China; tetramethyl thiazole blue 
(MTT) and dimethyl sulfoxide were purchased from Sig-
ma-Aldrich, USA; lipofectamine 2000 kit was purchased 
from Invitrogen, USA; dual luciferase activity assay kit 

was purchased from Promega, USA. BCA protein assay 
kit (cat. no. CW0014S) was obtained from CWBIO, Bei-
jing. 

Cell culture and transfection

CACO-2 cells and colonic epithelial cells were 
grown in EMEM with 10% FBS at 37°C in 5% CO2 
incubator and harvested at the logarithmic growth 
phase for detection of gene expression using reverse 
transcription-quantitative (qRT-PCR) and Western blot 
analysis. For transfection, cells were grown to 60% 
confluency and transfected using lipofectamine 2000 ac-
cording to the supplier’s instructions with 0.1μg each of 
miRNA-132-3p control (miR-con), miR-132-3p mimics 
(miR-132-3p), siRNA-FOXP2 control (si-con), siRNA-
FOXP2 (siFOXP2). The transfected cells were cultured 
for another 48 h in EMEM with 10% FBS at 37°C 
in 5% CO2 incubator and harvested for subsequent 
analysis. 

qRT-PCR

Cells were homogenized in Trizol reagent using a ho-
mogenizer (Teledyne Tekmar, OH). RNA was isolated 
from either chloroform phase separation with an Am-
bion Ribopure kit (Life Technologies, NY) or directly 
from Trizol reagent with a Direct-Zol miniprep plus 
kit (Zymo Research, CA). Extracted RNA were sub-
sequently reverse transcribed into cDNA using iScript 
supermix (Bio-Rad, CA) and RT-qPCR was performed 
using TaqMan miRNA Assays (Applied Biosystems) for 
miRNA and using TaqMan probes for FOXP2 (Life 
Technologies, NY), respectively. Normalization was 
done with RNU6B miRNA for miRNA and β-actin for 
FOXP2. The PCR was carried out in a total volume 
of 10 μl containing 1.5 μl of diluted and pre-amplified 
cDNA, 10 μl of TaqMan Master Mix and 1 μl of fluo-
rescence probe. The cycling conditions were 50ºC for 2 
min, 95ºC for 10 min followed by 45 cycles, each one 
consisting of 15 s at 95ºC and 1 min at 60ºC. Samples 
were run in triplicate and the mean relative expression 
levels were calculated using previously described proto-
col (Livak & Schmittgen, 2001). The primer sequences 
were miR-132-3p upstream: 5’-CGTAACAGTCCAGC-
CATG-3, downstream: 5’-TGGTGTCGTGGAGTCG; 
FOXP2 upstream: 5’-CCGGAATTCGCACCATGATG, 
downstream: 5’-CGCGGATCCTCATTCCAGATC; U6 
upstream: 5’-CTCGCTTCGGCAGACA, downstream: 
5’-AACGCTTCACGAATTTGCGT; β-actin upstream: 
5’-GAGCCCTCGCCTTTGCCGATCC, downstream: 
5’-CGATGCCGTGCTCGATGGGGG. 

Western blotting

100 μl cells were harvested 48 h after transfection and 
lysed with RIPA buffer containing protease inhibitors 
cocktail and quantitated using BCA kit according to the 
manufacturer’s instructions. After denaturing by boiling 
at 100°C for 5 min, 60 µg of proteins were separated 
by 10% SDS-PAGE, transferred to PVDF membranes, 
blocked with 5% non-fat milk in 1X TBST buffer with 
0.1% Tween 20 for 4 h at room temperature and then 
detected by staining with above stated-proper primary 
antibodies at 4°C overnight and secondary antibodies at 
25–26°C for 1 hour before visualization with a chemi-
luminescence kit. Densitometric analysis was conducted 
using Image J software, β-actin was used as an internal 
control.
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Cell proliferation assay

The cell proliferation was measured using MTT assay 
as described (Cheleschi et al., 2018). Briefly, cells were 
harvested 48 h after transfection and seeded into the 
wells of 96-well culture plates at the density of 2 × 103 
cells per well containing complete medium. After 24 h 
of incubation at 37°C in 5% CO2 incubator, each well 
was added with 20 µl MTT solution and incubated at 
37°C in 5% CO2 incubator for 4 h. The optical density 
at 490 nm was measured after adding dimethyl sulfoxide 
to dissolve the precipitates. Assays were run in triplicate. 

Transwell  cell migration and invasion assays

Transwell cell migration and invasion assays were 
performed based on published protocols (Justus et al., 
2014). Briefly, cells were transfected with miRNA mim-
ics or controls for 48 h, pelleted by centrifugation at 
500×g for 10 min at room temperature, and suspended 
in serum-free medium RPMI1640 medium. 2.0×104 cells 
were inoculated into the upper chamber of an insert (8-
μm pore size; BD Bioscience, USA). The low chamber 
of the Transwell contained RPMI1640 medium with 
10% FBS. The insert membrane was either coated or not 
coated with Matrigel for the assessment of cell invasion 
and migration, respectively. After 24 h of incubation at 
37°C, the cells remaining on the upper membrane were 
removed with a cotton wool, whereas the cells that had 
migrated or invaded through the membrane were stained 
with 2% crystal violet in 25% methanol/PBS, imaged 
and counted in five randomly selected fields using an 
EVOS XL Core inverted microscope (Life Technologies, 
USA). The experiments were independently repeated 
three times.

Dual luciferase reporter gene assay

 Type (WT) and mutant (MUT) FOXP2 3 ‘untranslat-
ed regions (UTRs) were used to construct reporter con-
structs (pGL-WT and pGL-MUT) using pGL3 as back-
bone plasmid. The cells were seeded into the wells of 96 
plates, grown to 60% confluency and co-transfected with 
pGL-WT, pGL-MUT, miR-132-3p and control using 
lipofectamine 2000 according to the supplier’s instruc-

tions. The transfected cells were cultured for another 48 
h in EMEM with 10% FBS at 37°C in 5% CO2 incu-
bator, pelleted by centrifugation and lysed with 200 µL 
buffer at 4°C for 30 min. 70 µL lysate was added with 
100 µL luciferase detection solution to determine the 
luciferase activity according to the manufacture’s proto-
cols. Renilla luciferase reporter gene was used as an in-
ternal control.

Statistical analysis

Data are expressed as the mean ± standard error of 
the mean obtained from at least three independent ex-
periments. Statistical comparisons between groups were 
assessed using one-way ANOVA with Tukey’s post hoc 
tests. Statistical analysis was performed using SPSS (21.0, 
IBM, USA). P<0.05 was considered statistically signifi-
cant.

RESULTS

FOXP2 was upregulated and miR-132-3p was down-
regulated in CRC cells

We first measured the expression of FOXP2 in 
human CRC cell line CACO-2 and primary colonic 
epithelial cells using Western blot analysis. The re-
sults showed that compared with colonic epithelial 
cells, CRC cells had significantly (P<0.01) elevated 
the FOXP2 level (Fig. 1A). We further analyzed the 
mRNA levels of FOXP2 and miR-132-3p in CACO-2 
and in the epithelial cells using qRT-PCR. The results 
revealed that FOXP2 were upregulated and miR-132-3p 
were down-regulated significantly (P<0.01) in CRC cells 
when compared with the non-cancer cells (Fig. 1B).

miR-132-3p reduced proliferation of CACO-2 cells and 
down-regulated CDK1, Cyclin D1 expression

To investigate the biological roles of miR-132-3p, 
CACO-2 cells were transfected with miR-132-3p mimics 
and control. Compared with miR-con, miR-132-3p mim-
ics (miR-132-3p) significantly increased the level of miR-
132-3p and decreased the proliferation of CACO-2 cells, 

Figure 1. Comparison of relative FOXP2 and miR-132-3p levels in human colorectal  cancer cell line CACO-2 and primary colonic 
epithelial cells. 
(A) FOXP2 protein levels, left panel: representative Western blot, right panel: relative protein content; (B) miR-132-3p and FOXP2 
mRNA level. **denotes P<0.01 vs non-cancer epithelial cells. 

Table 1. Expression of miR-132-3p, CDK1, Cyclin D1 and growth of CACO-2 cells after transfection with miR-132-3p

Treatment Cell density (OD495 nm) after Relative expression 

24 h 48 h 72 h miR-132-3p CDK1 Cyclin D1

miR-con 0. 42±0. 05 0. 72±0. 15 1. 42±0. 85 1. 12±0. 15 0. 62±0. 07 0. 82±0. 15

miR-132-3p 0. 12±0. 02** 0. 22±0. 05** 0. 42±0. 08** 4. 17±0. 85** 0. 33±0. 03** 0. 42±0. 05**

**denotes P<0.01 vs miR-con
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as measured by OD values over 72 h period after trans-
fection (P<0.01, Table 1). In addition, CDK1 and Cyclin 
D1 were down-regulated in the CACO-2 cells following 
transfection with miR-132-3p (P<0.01, Table 1).

MiR-132-3p reduced migration and invasion of CACO-2 
cells

Using the Transwell well assays, migration and inva-
sion of CACO-2 cells were assessed. The results showed 
that after transfection with miR-132-3p, the cell migra-
tion and invasion were significantly reduced compared to 
miR-con (P<0.01, Fig. 2A). Western blot assay of EMC-
related proteins showed that MMP-2 and MMP-9 were 
significantly downregulated after transfection with miR-
132-3p compared to miR-con (P<0.01, Fig. 2B).

Mir-132-3p targeted FOXP2 

Bioinformatics analysis suggested that there is a se-
quence complementary to miR-132-3p in the 3’UTR 
of FOXP2 (Fig. 3A), implying that FOXP2 might be a 
target of miR-132-3p. To verify this, dual luciferase ac-
tivity assays were conducted using wildtype and mutant 
3’UTR sequences of FOXP2. The results showed that 
co-transformation of miR-132-3p with pGL-WT result-
ed in a significant reduction of luciferase activity, while 
no reduction was observed when pGL-MUT was used 
(Fig. 3B), confirming that miR-132-3p targets FOXP2 
specifically. Furthermore, transfection of miR-132-3p re-
duced the level of FOXP2 in CACO-2 cells, while miR-
con did not alter the level (Fig. 4). 

Downregulating FOXP2 expression attenuated the 
proliferation and migration of CACO-2 cells

To assay the impact of FOXP2 on the migration and 
invasion assays of CACO-2 cells, we knockdown the 
expression of FOXP2 using siRNA. Compared with si-
con, transfection of CACO-2 cells with siRNA-FOXP2 
significantly reduced the level of FOXP2 as well as the 
cyclin-dependent kinase 1(CDK1), CyclinD1, MMP-2 
and MMP-9 (P<0.01, Fig. 5A). Transwell assays showed 
that the proliferation and migration of CACO-2 cells 

were significantly lower after siRNA-FOXP2 transfection 
than with si-con (P<0.01, Fig. 5B).

DISCUSSION

MiRNAs play an important regulatory role in cell pro-
liferation, apoptosis, migration and invasion of malignant 
tumors and are potential targets for the treatment of ma-
lignant tumors (Ganju et al., 2017; Mishra et al., 2016). 
Our study showed that miR-132-3p is downregulated 
and FORX2 is upregulated in CRC cells; upregulation of 
miR-132-3p reduces the proliferation, migration and in-
vasion of CACO-2 cells. These changes are likely medi-
ated via regulation of FORX2, cell-cycle related proteins 
and metastasis-related proteins. Our findings indicate 
that miR-132-3p may be further explored as potential 
gene therapy agent for CRC. 

In an early study, it was found that the expression 
of miR-132-3p is significantly decreased in gastric can-
cer tissue, and the inhibition of miR-132-3p expression 
activates epidermal growth factor receptor (EGFR), and 
extracellular signal-regulated kinase (ERK), and serine / 
threonine kinase (AKT) signaling pathways via targeting 
Mucin 13, leading to an increased proliferation and mi-
gration of gastric cancer cells (He et al., 2017). Consist-
ent with the study, we found that miR-132-3p expres-

Figure 2. Migration and invasion of CACO-2 cells and expres-
sion of MMP-2 and MMP-9 in CACO-2 cells after transfection 
with miR-132-3p. 
(A) migration and invasion assays, left panel: representative micro 
photos of migration and invasion assays, right panel: number of 
cells migrated and invaded per field. (B) MMP-2 and MMP-9 ex-
pressions, left panel: representative Western blots, right panel: 
relative protein levels. **denote P<0.01 vs miR-con. 

Figure 3. Predicated pairing of miR-132-3p with FOXP2 3’UTR 
and dual luciferase activity assays for miR-132-3p interaction 
with FOXP2. 
(A) Pairing of miR-132-3p with FOXP2 3’UTR WT and MUT se-
quences, (B) dual luciferase activity assays. **denote P<0.01 vs 
miR-con. 

Figure 4. Expression of FOXP2 in CACO-2 cells after transfection 
with miR-132-3p. 
Left panel: representative Western blots, right panel: relative pro-
tein levels. **denote P<0.01 vs miR-con. 
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sion is downregulated in CRC cells as compared with 
non-cancer cells. 

On other hand, FOXP2 was found elevated in CRC 
cells. FOXP2 is one of the first discovered genes impli-
cated in a speech and language disorder and influences 
many human traits (Nudel & Newbury, 2013). While it 
encodes a transcription factor involved in speech and 
language acquisition, accumulating evidence now indi-
cates that dysregulated FOXP2 may also play an instru-
mental role in oncogenesis and several FOXP2 family 
members are directly involved in cancer initiation, main-
tenance and progression (Campbell et al., 2010b; Myatt 
& Lam, 2007; Yan et al., 2015b). Its expression is down-
regulated in breast cancer (Cuiffo et al., 2014) and hepa-
tocellular carcinoma (Yan et al., 2015a), and upregulated 
in lymphomas (Campbell et al., 2010b; Wong et al., 2016), 
neuroblastomas (Khan et al., 2015) and ERG fusion-
negative prostate cancers (Stumm et al., 2013), although 
its expression has not been reported for CRC. Bioinfor-
matics analysis showed that miR-132-3p is a potential 
regulator of adenoid cystic carcinoma where FOXP2 is 
involved (Liu et al., 2021). FOXP2 was recently found 
expressing abnormally in a number of tumors (Li et al., 
2019; Yao et al., 2018). For example, FOXP2 expression 
is upregulated in triple negative breast cancer (TNBC) 
and cell lines, silencing FOXP2 inhibits the growth, in-
vasion and metastasis of TNBC cells in vitro and in vivo 
(Wu et al., 2018) via TGFβ/SMAD signaling pathway 
(Chen et al., 2018; Qin et al., 2019; Zhong et al., 2017). 
With dual luciferase activity assay, the luciferase activ-
ity was found specifically reduced once wildtype FOXP2 
3’UTR sequence was used, but not the MUT sequence 
(which does not pair with miR-132-3p), suggesting that 

FOXP2 is a specific target of miR-132-3p. This interac-
tion between FOXP2 and miR-132-3p could result in the 
reduction of FOXP2 through mRNA translation repres-
sion or decay (Fabian et al., 2010).

As a consequence, upregulation of miR-132-3p after 
transfection with miR-132-3p mimics reduces the expres-
sion of FOXP2 in CRC cells, leading to reduced cell pro-
liferation, migration and invasion of CRC cells. Similar 
anti-cancer activity was observed when FOXP2 expres-
sion was knockdown with siRNA-FOXP2, suggesting 
that FOXP2 may be an oncogene, although further stud-
ies are needed to elucidate the underlying mechanism. 

To assess the molecular mechanisms related to the 
changes in cell proliferation and migration, we deter-
mined the proteins related to cell division (CDK1 and 
Cyclin D1) and metastasis (MMP-2 andMMP-9). These 
proteins were down-regulated after transfection with 
miR-132-3p or after silencing FOXP2, suggesting that 
miR-132-3p and FOXP2 might act on the same down-
stream pathways. CDK1 is a driver and a regulator of 
cell division; down-regulation of CDK1 may reduce the 
overall capacity of protein synthesis and impair cell’s 
dividing ability (Haneke et al., 2020; Michowski et al., 
2020). Cyclin D1 expression is required for cancer cell 
survival and proliferation likely via the inactivation of 
the RB tumor suppressor, and cyclin D1 depletion could 
facilitate cellular senescence in cancer cells (Laphanu-
wat et al., 2018). Cyclin D1 protein plays an important 
role in regulating the progress of the cell during the G1 
phase of the cell cycle and is amplified in approximate-
ly 20% of mammary cancers (Barnes & Gillett, 1998). 
It was shown that down-regulation of cyclin D1 could 
result in G0/G1 cell cycle arrest and inhibit cancer cell 
proliferation (Zheng et al., 2020). Vitex rotundifolia fruit (a 
traditional medicine for treating inflammation, headache, 
migraine) was found to inhibit the proliferation of hu-
man CRC cells through down-regulating cyclin D1 and 
CDK4 via proteasomal-dependent degradation and tran-
scriptional inhibition (Song et al., 2018). 

MMP-2 is a 72-kDa zinc- and calcium-dependent en-
dopeptidase. It has intracellular and extracellular func-
tions ranging from the modulation of extracellular ma-
trix remodeling to cell growth and migration, angiogen-
esis and inflammation (Fernandez-Patron et al., 2016). 
MMP-2 might be a prognostic marker in ascites of ad-
vanced gastric cancer patients with disseminated metas-
tasis (Noh et al., 2011). MMP-9 level was significantly 
elevated in gastric cancer patients when compared with 
control subjects (Wu et al., 2007). Earlier study showed 
that dysregulating MMPS such as MMP-2, MMP-9 and 
MT1-MMP by ACY-241 and JQ1, would suppresses 
proliferation and metastasis of head and neck squamous 
cell carcinomas and down-regulation of MMP-2/MMP-9 
by myricetin, a natural polyphenol, could suppress breast 
cancer metastasis (Ci et al., 2018). All these findings 
confirmed that miR-132-3p and FOXP2 exert a biologi-
cal effect via acting on CDK1, cyclin D1, MMP-2 and 
MMP-9. Further studies are needed to elucidate the mo-
lecular mechanisms underlying the interaction between 
miR-132-3p and FOXP2 and these proteins. Further-
more, findings from the present study were derived from 
one cell line and should be further validated in more cell 
lines or tissue. 

CONCLUSIONS

miR-132-3p is down-regulated in CRC cells and trans-
fection of CRC cells inhibits the expression of FOXP2 

Figure 5. Expression of FOXP2, CDK1, CyclinD1, MMP-2 and 
MMP-9 in CACO-2 cells and migration and invasion of CACO-2 
cells after transfection with siRNA-FOXP2. 
(A) upper panel: representative Western blots, lower panel: rela-
tive protein levels. (B) migration and invasion of CACO-2 cells, left 
panel: representative micro photos of migration and invasion as-
says, right panel: number of cells migrated and invaded per field. 
**denote P<0.01 si-con. 
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and proliferation, migration and invasion of CRC 
cells, which is likely achieved via negative regulation of 
FOXP2 expression. Down-regulation of FOXP2, which 
is confirmed to a target gene of miR-132-3p, also re-
sults in a reduced proliferation, migration and invasion 
of CRC cells. Therefore, miR-132-3p may be further ex-
plored for therapeutic applications in CRC.
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