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Vitamin D is a steroid hormone of great importance in 
the human body. It is produced in the skin from 7-de-
hydrocholesterol, upon UV radiation. In order to ex-
ert its functions, vitamin D has to be hydroxylated (via 
CYP27A1 and CYP27B1 hydroxylases), which is followed 
by its interaction with the vitamin D receptor (VDR) 
or retinoic acid-related orphan receptors α or γ (RORα 
and RORγ). By binding with the vitamin D response el-
ements (VDRE) located in the promoter regions, the 
vitamin D ligand-receptor complex may regulate vita-
min D-related genes. Recently, vitamin D has acquired 
a great interest for its plausible association with cancer 
development. This review discusses the potential role 
of vitamin D, its analogues, and enzymes involved in its 
metabolism with breast cancer incidence and outcome. 
According to the literature, alterations in the vitamin D 
endocrine system, both at the mRNA and protein level, 
have an impact on breast cancer incidence and prog-
nosis. Moreover, specific enzymes participating in vi-
tamin D metabolism may serve as therapeutic targets. 
Notably, treatment with vitamin D analogues also gives 
promising results in experimental research. However, 
given the fact that breast cancer is heterogenous dis-
ease, further studies are needed to thoroughly eluci-
date the potential of vitamin D and enzymes involved 
in its metabolism in breast cancer development, pro-
gression and therapy. Therefore, plausible effects of vi-
tamin D in cancer therapy or prevention have been the 
principal aim of numerous studies.
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VITAMIN D METABOLISM

Vitamin D is a precursor of 1,25-dihydroxyvitamin 
D (calcitriol), a steroid hormone that plays a very im-

portant role in the body in maintaining calcium and 
phosphorus homeostasis.  There are two major forms 
of vitamin D:D2 (ergocalciferol) and D3 (cholecalcifer-
ol). Vitamin D2 is mainly produced by plants, and can 
be delivered to the body with the plant components of 
meals (for example mushrooms and yeast). In turn, vi-
tamin D3 (cholecalciferol) is of animal origin. The main 
source of vitamin D3 for humans is the synthesis from 
7-dehydrocholesterol that occurs in the skin exposed to 
the sun light, mainly to the UVB light (290–315 nm) 
(Tripkovic et al., 2012; Christakos et al., 2016). An ad-
ditional source of this vitamin is a diet rich in fish oils, 
eggs or fortified foods, such as breakfast cereals and 
fruit juices. The two forms, D2 and D3, differ primar-
ily in their side chain structure, however, they are con-
verted in the body to the same biologically active com-
pound – calcitriol (1,25(OH)2D3).

Vitamin D, synthesized under the influence of UVB 
radiation, is released from epidermal cells into the 
blood and lymphatic vessels located in the deeper lay-
ers of the dermis. This form of vitamin D, similarly to 
the one taken with food, is bound to the vitamin D 
binding protein (VDBP) and transported to the liver 
(Christakos et al., 2016). The liver plays a particularly 
important role in vitamin D first hydroxylation which 
is carried out by 25-hydroxylase (CYP27A1). This re-
action produces calcidiol (25(OH)D3) which is subse-
quently transported in the bloodstream as a protein-
bound VDBP to the kidneys (Christakos et al., 2016). 
A transmembrane protein, megalin, present in the 
proximal tubules of kidneys, acts as a VDBP receptor, 
allowing the uptake of (25(OH)D3) in tubular epithe-
lial cells by endocytic internalization (Christakos et al., 
2016). The second hydroxylation and formation of the 
active form of vitamin D3, or calcitriol (1,25(OH)2D3), 
is catalyzed by 1α-hydroxylase (CYP27B1) in the kid-
neys (Holick, 2017).

The biological activity of calcitriol is based on its in-
teraction with the vitamin D receptor (VDR) (Jones, 
2013; Holick, 2017). After binding calcitriol, the VDR 
receptor heterodimerizes with the retinoid X receptor 
(RXR) and translocates to the nucleus. The resulting 
VDR-RXR heterodimer acts as a transcription factor - 
it can bind to a specific DNA sequence present in the 
promoter regions, referred to as the vitamin D response 
element (VDRE), which can regulate expression of the 
target genes (Jones, 2013; Holick, 2017). 

It was indicated that only about 15% of 7-dehydro-
cholesterol transforms into previtamin D3 in the UV-
exposed skin. Each subsequent UV light exposure leads 
to an equilibrium between previtamin D3 conversion into 
its further derivatives: lumisterol3 and tachysterol3, and 
its transformation back into 7-dehydrocholesterol. Fur-
thermore, if vitamin D3 produced in the skin is exposed 
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to UVB radiation, it can be converted into several su-
prasterols and 5,6-trans-vitamin D3 as a result of absorp-
tion of this radiation. In addition, previtamin D3 may 
be also transformed into several toxisterols. Therefore, 
regardless of individual sun exposure, there is no risk 
of vitamin D hypervitaminosis or toxicity due to photo-
degradation of excess previtamin D3 and vitamin D3 to 
products  without calcemic activity (Wacker & Holick, 
2013). 

Concentration of the active form of vitamin D 
(1,25(OH)2D3) is tightly regulated by hydroxylation 
of carbon at position C24, carried out by CYP24A1 
(1,25-dihydroxyvitamin D3 hydroxylase) (Annalora et al., 
2010; Wasiewicz et al., 2015). Hydroxylation of calci-
triol causes a drastic decrease in its biological activity, 
and further oxidation by CYP24A1, resulting in uri-
nary excretion of the newly formed metabolite – the 
calcitroic acid (Prosser & Jones, 2004; Wasiewicz et al., 
2015). Alternative pathways of vitamin D metabolism 
have been also identified. One of them is initiated by 
the CYP11A1 hydroxylase (cholesterol desmolase), 
where cholesterol is converted to pregnenolone to ini-
tiate steroidogenesis (Slominski et al., 2012b; Slominski 
et al., 2015). The products of this pathway are many 
hydroxyl derivatives, including 20-hydroxyvitamin D3 
(20(OH)D3), which are biologically active and may act 
through  VDR and alternative receptors (Slominski et 
al., 2017a; Slominski et al., 2017c). Therefore, vitamin 
D may undergo alternative activation pathways in the 
skin or other organs where CYP11A1 is expressed (Slo-
minski et al., 2017a; Slominski et al., 2017c). The classi-

cal and alternative pathways of vitamin D metabolism 
are presented in Fig. 1.

NOVEL RESEARCH ON VITAMIN D DEFICIENCY IN 
BREAST CANCER

There are a lot of studies indicating that vitamin D 
influences  inhibition of cell proliferation, invasion, me-
tastasis and angiogenesis, as well as induction of apop-
tosis and tumor cell differentiation (Chakraborti, 2011). 
Therefore, various cancers, including breast cancer, have 
been studied in relation to vitamin D deficiency and can-
cer risk. 

Breast cancer is the most common malignancy among 
women worldwide. Early stage disease without metasta-
ses is curable in ~70–80%, while advanced breast can-
cer with metastases to distant organs is considered to be 
terminal since currently available therapies are ineffective 
for those cases (Harbeck et al., 2019).

Although many studies have been conducted to evalu-
ate the relationship between vitamin D deficiency and 
breast cancer risk, there is still a controversy in the lit-
erature about this association. Some studies have shown 
that there is no association between breast cancer risk 
and vitamin D levels (Chlebowski et al., 2008), and others 
show that breast cancer is associated with low vitamin D 
levels (Janowsky et al., 1999; Abbas et al., 2008; Yousef et 
al., 2013; Alco et al., 2014; Clark et al., 2014; Song et al., 
2019). Interesting results on the association of vitamin D 
deficiency and breast cancer come from Pakistan, where 
low levels of vitamin D are detected especially among 

Figure 1. The classical and alternative pathways of vitamin D metabolism. 
Abbreviations: CYP27A1, 25-hydroxylase; CYP11A1, cholesterol desmolase; CYP27B1, 1α-hydroxylase; CYP24A1, 1,25-dihydroxyvitamin D3 
hydroxylase; VDR, vitamin D receptor; RORα, retinoic acid-related orphan receptor α; RORγ, retinoic acid-related orphan receptor γ; VDRE, 
vitamin D response elements; 1,25(OH)2D3, cacitriol; 25(OH)D, calcidiol. Under exposure to UV radiation, 7-dehydrocholesterol transforms 
into previtamin D3. After several subsequent transformations, vitamin D3 can be converted into 25(OH)D3  or 20(OH)D3 forms, in reactions 
catalyzed by CYP27A1 or CYP11A1, respectively. Further hydroxylation led by CYP11A1 results in formation of the 20,23(OH)2D3 deriva-
tive. 25(OH)D3 form can be transformed into 24,25(OH)2D3 or it can be hydroxylated by CYP27B1 to active form of vitamin D, 1,25(OH)2D3. 
It can bind to one of the receptors: VDR, RORα, or RORγ, which is followed by translocation to VDRE in the nucleus, where it can impact 
vitamin D-related genes. 1,25(OH)2D3 can be also converted by CYP24A1 to calcitroic acid; which can be subsequently excreted. 
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the female population, due to body covering with cloth-
ing and non-exposure of skin to UVB. In a study con-
ducted at Shaukat Khanum Memorial Cancer Hospital 
and Research Centre, Lahore, Pakistan, vitamin D defi-
ciency was found in 95.6% of breast cancer patients and 
77% in the control group (Shaukat et al., 2017). 

High plasma concentrations of 25(OH)D may have 
beneficial effects in  prevention of breast cancer, espe-
cially in older women. However, the risk of developing 
this cancer may also be affected by the level of local 
conversion of 25(OH)D to 1,25(OH)2D3 in the breast 
tissue, as well as circulating 1,25(OH)2D3 in the serum 
(Bertone-Johnson et al., 2005). It is also believed that vi-
tamin D3 deficiency is associated with a worse prognosis 
in patients with breast cancer (Goodwin et al., 2009). The 
observational study evaluating the association between 
serum 25(OH)D levels and breast cancer risk, involving 
a group of 1 760 individuals, found that serum 25(OH)
D levels above 130 nM lead to a 50% reduction in the 
incidence of this cancer (Garland et al., 2007).

ANALYSES OF ENZYMES IMPLICATED IN VITAMIN D 
METABOLISM IN BREAST CANCER PATIENTS

As was mentioned above, there is an ambiguous re-
lationship between the vitamin D level and breast can-
cer incidence. The enzymes which take part in vitamin 
D metabolism, also serve as the crucial components for 
maintaining vitamin D concentration in the organism. 
Therefore, it seems plausible that their impaired activity 
may be related to the breast cancer occurrence.  

It has been demonstrated that in the vitamin D me-
tabolism, enzymes belonging to the cytochrome P450 
mixed-function oxidases play the major role (Sugimoto 
& Shiro, 2012). CYP27A1 is a mitochondrial enzyme re-
sponsible for vitamin D 25-hydroxylation. It is also in-
volved in bile acid formation (Lorbek et al., 2012), since 
it participates in cholesterol transformation to 27-hy-
droxycholesterol (Kimbung et al., 2017). This specific 
metabolite serves as a selective estrogen receptor modu-
lator (DuSell et al., 2008), and, therefore, all of the stud-
ies reviewed so far, did not analyze CYP27A1 in terms 
of its prospective implication in the vitamin D level in 
breast cancer patients. Nevertheless, there are several 
studies which investigated expression level of CYP27A1 
in breast cancer patients. Kimbung and others (Kimbung 
et al., 2020) conducted a study relating to the immuno-
histochemical expression of CYP27A1 in breast cancer 
tumors. Nearly one third of breast cancer tumors ex-
pressed high CYP27A1 level. Moreover, the majority 
of them were high graded tumors, with larger size and 
without estrogen or progesterone receptors (Kimbung et 
al., 2020). According to the authors, breast cancer pa-
tients with high CYP27A1 displayed poorer overall sur-
vival and recurrence-free survival (Kimbung et al., 2020). 
Another study revealed that an increased CYP27A1 
level was predominantly detected in HER2 negative  
(HER2(–)) breast tumors in grade II with high Ki67 and 
p53 (Le Cornet et al., 2020). This points out that high 
CYP27A1 expression appears to be more frequently de-
tected in more aggressive breast cancer types. Therefore, 
an important question is whether the pathways underly-
ing upregulation of CYP27A in breast tumors are related 
to vitamin D metabolism.

The subsequent vitamin D hydroxylation – from 
25-hydroxyvitamin D (25(OH) D3) to 1,25-dihydroxy-
vitamin D (1,25(OH)2D3) – is driven by the CYP27B1 
enzyme (Bikle, 2014). Since 1,25(OH)2D3 is an active 

form of vitamin D, CYP27B1 is an evident determinant 
of maintaining the vitamin D level. Nevertheless, there 
is no general agreement about the CYP27B1 expression 
level in breast cancer. A breast cancer study analyzing 
mRNA expression of CYP27B1 in 30 patients revealed 
its downregulation in comparison to normal breast tis-
sue (Zhalehjoo et al., 2017). Moreover, this decrease was 
more profound in breast tumors in stage 2, in contrast 
to those in stage 1 (Zhalehjoo et al., 2017). Similar re-
sults were obtained in the study by Segersten and others 
(Segersten et al., 2005), where CYP27B1 mRNA expres-
sion was significantly decreased, though the analysis was 
performed on only 10 breast tumors. Moreover, an in 
vitro study revealed that CYP27B1 is expressed in non-
transformed human mammary epithelial cells, however, 
after induced oncogenic transformation, its expression is 
significantly reduced (Kemmis & Welsh, 2008). There-
fore, it is somewhat surprising that some papers indi-
cated that expression of CYP27B1 is increased in breast 
tumors (Townsend et al., 2005; Friedrich et al., 2006), 
or not-statistically different between breast tumors and 
normal breast (Lopes et al., 2010). This demonstrated in-
consistency may be linked to the molecular subtype of 
breast cancer and, possibly, to its own specific vitamin 
D metabolism. In line with this assumption, several in 
vitro studies indicated different CYP27B1 expression af-
ter exposure of vitamin D analogs in molecularly differ-
ent breast cancer cell lines (Diesing et al., 2006; Richards 
et al., 2015). Furthermore, it cannot be excluded that 
changes in CYP27B1 expression may be related to CY-
P27B1 splice variants, since such variants were detected 
in the breast cancer cell lines (Cordes et al., 2007; Fischer 
et al., 2007). 

Degradation of vitamin D (both forms, 25(OH)D 
and 1,25(OH)D3) is led by CYP24A1 (Bikle, 2014), and 
thus its expression is frequently analyzed along with CY-
P27B1 in order to obtain the complete insight into vita-
min D metabolism in an organism. As it was indicated 
in an in vitro study, CYP24A1 suppression may impact 
growth and tumorigenic potential of breast cancer cells 
(Osanai & Lee, 2016). In the study by Cai and others 
(Cai et al., 2019) enrolling over 1000 patients from the 
TCGA-BRCA cohort, low CYP24A1 mRNA expression 
was significantly correlated with poor breast cancer prog-
nosis, overall survival and relapse-free survival. Interest-
ingly, decreased CYP24A1 expression was also associated 
with the molecular subtype of breast cancer and hormo-
nal receptors’ status. Also, an in vitro study with breast 
cancer cells reveled that breast cultures correspond-
ing to different molecular subtypes displayed different  
CYP24A1 mRNA expression levels (Alimirah et al., 
2010). These findings support our previous assumption 
that the vitamin D metabolism may differ depending on 
a specific subtype of breast cancer. On the other hand, 
another study indicated that there is a relationship be-
tween inhibition of CYP24A1 and increased anticancer 
influence of 1,25(OH)2D3 (Sheng et al., 2016). This in-
consistency may be potentially linked with single nucleo-
tide polymorphisms (SNPs) of CYP24A1, which were 
reported in breast cancer patients (Cao et al., 2020). 

There has been an increasing amount of literature on 
deregulation of CYP27B1 and CYP24A1 in breast can-
cer, suggesting that the interaction of 1,25(OH)2D3 with 
its specific receptors may be also disturbed in the course 
of this malignancy. Since the main vitamin D receptor 
– VDR – was identified in breast epithelial cells (Zin-
ser & Welsh, 2004), and since there are hundreds of 
vitamin D-related genes (Nurminen et al., 2019), altera-
tions in the VDR level may be plausibly associated with 
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breast tumorigenesis. In fact, findings from previous pa-
pers support this hypothesis. Based on analysis of over 
700 invasive breast tumors, Huss and others (Huss et 
al., 2019) indicated that high VDR expression is strongly 
related to favorable prognosis: smaller size and lower 
grade of tumor, and a decreased mortality risk. Moreo-
ver, high VDR expression was also more frequently 
detected in tumors with estrogen and progesterone re-
ceptor expression (Lopes et al., 2010; Huss et al., 2019), 
which are found to have better prognosis. Comparing 
the VDR level among the different types of breast can-
cer, the highest VDR expression is observed in benign 
lesions, and decreases with tumor progression (Lopes et 
al., 2010) and more aggressive phenotype (Al-Azhri et al., 
2017). An in vitro study by Kemmis and Welsh (Kemmis 
& Welsh, 2008) also indicated that a provoked malignant 
transformation of normal breast cells has significantly 
decreased the VDR expression. However, 1,25(OH)2D3 
supplementation to normal cells and breast cancer ones 
evoked VDR downregulation only in one healthy and in 
one tumorigenic cell line, with no effect in the majority 
of the rest of breast cultures (Beaudin et al., 2015). Based 
on these findings, it seems that another mechanism may 
be implicated in regulation of the tumorigenic potential 
of breast cancer cells. According to Singh and Adams 
(Singh & Adams, 2017), several miRNAs may regulate 
the VDR level in breast cancer. Based on a literature re-
view and in silico analysis, the authors proposed three 
mRNAs: miR-23, miR-124 and miR-125, since they play 
crucial roles in breast carcinogenesis. However, further 
work is required to establish their function in terms of 
the VDR level in breast cancer development. 

Although vitamin D mainly interacts with VDR, there 
is a growing evidence of its possible transport via reti-
noic acid-related orphan receptors α and γ (RORα and 
RORγ). Vitamin D derivatives 20(OH)D3, 20(OH)D2 and 
20,23(OH)2D3 can interact with RORα and RORγ in an 
antagonistic or inverse agonistic manner (Slominski et al., 
2014c; Slominski et al., 2017c). A considerable amount of 
literature has been published on the plausible connection 
between impaired expression of nuclear receptors and 
breast cancer development (Riggins et al., 2010; Muscat 
et al., 2013; Doan et al., 2014). Although RORα was also 
found to be expressed in normal breast (Zhu et al., 2006), 
both receptors are mainly investigated in breast tumors. 
Expression of RORα is reduced in breast cancer (Zhu et 
al., 2006; Lu et al., 2007), and there are several studies in-
vestigating its role in breast carcinogenesis. According to 
in vitro research, RORα may impact an increase in aro-
matase expression in breast cancer cells, thus augmenting 
their proliferation (Odawara et al., 2009). Given that aro-
matase can convert androgens to estrogens, this enzyme 
may play central role in breast cancer development, since 
estrogens are involved in growth of the breast cancer 
cells (Saha et al., 2019). The molecular mechanism un-
derlying RORα’s impact on inhibition of breast cancer 
cell proliferation is related to its ability to recruit tran-
scription factors. Both, RORα and RORγ, have an ability 
to bind corepressors or coactivators in regulatory regions 
of the transcribed genes, and thus they can influence 
gene expression (Jetten, 2009). Another in vitro study 
demonstrated that RORα may bind transcription factor 
E2F1, which is responsible for cell cycle regulation, and 
hence for cell proliferation (Xiong & Xu, 2014). Moreo-
ver, RORα was also indicated as a potential breast tu-
mor suppressor, as it can regulate the tumor suppressor 
microenvironmental factor: semaphorin 3F (SEMA3F) in 
breast cancer cells  (Xiong et al., 2012). Expression level 
of RORγ is also reduced in aggressive types of breast 

cancers, and decreases with histological grade (Muscat et 
al., 2013; Oh et al., 2016). Moreover, high RORγ is cor-
related with distance metastasis-free survival and better 
outcome of breast cancer (Oh et al., 2014). The molecu-
lar mechanism associated with RORγ and breast cancer 
development is plausibly linked with a DNA repair path-
way or TGF-β induced epithelial mesenchymal transition 
(EMT) pathway (Oh et al., 2016), which leads to metas-
tasis (Imamura et al., 2012). The aforementioned findings 
suggest that RORα and RORγ may be prospective fac-
tors in breast cancer therapy. 

As was mentioned above, active form of vitamin D 
can be hydroxylated by CYP11A1, followed by produc-
tion of approximately 10 vitamin D derivatives, includ-
ing 20(OH)D3 or 20,23(OH)2D3 (Slominski et al., 2014a). 
However, CYP11A1 is also a crucial enzyme in choles-
terol metabolism, thus it can convert cholesterol to preg-
nenolone which is an initial step in steroid hormones’ 
synthesis (Miller & Bose, 2011). Therefore, CYP11A1 
expression in breast cancer is mainly analyzed from that 
point of view. Nevertheless, several studies reported that 
genetic polymorphisms of this gene are prospectively re-
lated to breast cancer risk (Zheng et al., 2004; Setiawan et 
al., 2006; Yaspan et al., 2007; Sun et al., 2012). It cannot 
be excluded that CYP11A1 gene polymorphisms may be 
also associated with implications of vitamin D metabo-
lism in breast cancer. However, in order to answer en-
tirely whether CYP11A1 significantly implicates vitamin 
D metabolism in breast cancer, it is necessary to analyze 
the vitamin D3 analogues’ level. 

POSSIBLE EPIGENETIC IMPACT ON CHANGES IN 
VITAMIN D METABOLISM OBSERVED IN BREAST 
CANCER PATIENTS

Epigenetic processes are proven to have an impact 
on transcription regulation (Weinhold, 2006). Moreo-
ver, there is a general agreement that disturbances in 
epigenetic mechanisms are associated with cancer initia-
tion (Baylin & Jones, 2011). The most fundamental and 
widely described epigenetic processes are associated with 
DNA methylation and a variety of histone modifications. 
DNA hypomethylation occurs in many types of cancer, 
including breast cancer (Feinberg & Vogelstein, 1983), 
moreover, changes in DNA methylation are associated 
with molecular subtypes of breast cancer (Holm et al., 
2016), suggesting an important role of impaired DNA 
methylation in breast carcinogenesis. Additionally, it was 
proven that alterations in DNA methylation of BRCA, 
p53 or ESR1 are involved in breast cancer progression 
(Karsli-Ceppioglu et al., 2014). Therefore, it seems plau-
sible that genes implicated in vitamin D metabolism may 
be also epigenetically changed during breast cancer de-
velopment. In line with this hypothesis, a comprehensive 
cohort study has been recently published (O’Brien et al., 
2018). The authors examined 198 CpG loci in or near 
vitamin D-related genes in women with diagnosed breast 
cancer or with breast cancer diagnosed in their sisters. 
The study indicated a significant correlation between 
methylation of RORα and 25(OH)D level with regard to 
breast cancer incidence. Furthermore, significant relation-
ship was also noticed for CpG methylation of CYP24A1, 
CYP27A1 and VDR (O’Brien et al., 2018). Similar results 
were also found in a previous study, which demonstrated 
that VDR is significantly hypermethylated in breast tu-
mors in comparison to normal mammary glands (Marik 
et al., 2010). Changes in methylation of vitamin D-relat-
ed genes were also detected in breast cancer cell lines. 
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In these studies, CYP27B1 (Shi et al., 2002) and VDR 
(Marik et al., 2010) were found to be hypermethylated. 
Moreover, such changes were reversible upon treatment 
with 5-aza-2-deoxycytidine (5-aza-dC). Interestingly, sup-
plementation of 1,25(OH)2D3 did not impact the meth-
ylation status in breast cancer cells (Marik et al., 2010). 
However, 1,25(OH)2D3 treatment in MDA-MB-231 cells 
was related to Cadherin 1 demethylation, and this effect 
was significantly higher than after treatment with 5-aza-
dC (Lopes et al., 2012). These findings highlight the un-
ambiguous relationship between DNA methylation and 
breast cancer in terms of vitamin D metabolism. 

It was conclusively demonstrated that vitamin D exerts 
its effect by binding in its active form to VDR. Addi-
tionally, it was indicated that VDR has an ability to form 
a dimer with RORα which can subsequently bind to 
the vitamin D response elements (VDRE) in the DNA 
(Cheskis & Freedman, 1994; Nishikawa et al., 1994). This 
complex impacts  transcription through interactions with 
histone acetyltransferases (HAT), followed by chroma-
tin changes (Campbell et al., 2010). An increasing body 
of evidence reveals that histones’ modifications (includ-
ing methylation and acetylation) are involved in breast 
cancer metastasis (extensively reviewed in Nandy et al., 
2020; Zhuang et al., 2020). According to Saramäki and 
others (Saramäki et al., 2009) both the histone acetylation 
and methylation processes are involved in cyclic chro-
matin looping during regulation of p21 expression after 
1,25(OH)2D3 supplementation to breast cancer cells. It 
should be also mentioned that the histone deacetylase 
inhibitors, along with 1,25(OH)2D3, caused significant 
changes in colony formation and expression of vitamin 
D-related genes in breast cancer cell lines (Hossain et al., 
2020). These data demonstrate that the active form of 
vitamin D may be considered as a potential epigenetic 
drug. 

VITAMIN D AND ITS ANALOGUES AS POTENTIAL 
THERAPEUTIC DRUGS IN BREAST CANCER

The use of 1,25(OH)2D3 at therapeutic doses is lim-
ited due to calcemic effects. Thus, the studies are fo-
cused on  identification or synthesis of its derivatives 
showing anticancer properties and reduced calcemic ef-
fects. Already almost 30 years ago  Colston and others 
(Colston et al., 1992) reported that calcipotriol, a vitamin 
D analogue, has significantly inhibited  proliferation of 
breast cancer cells in vitro, inhibited tumor progression 
in vivo and had 100–200 folds lower hypercalcemic ef-
fects. The same group also showed that other vitamin 
D analogues, EB1089 and CB1093, resulted in inhibition 
of breast cancer growth (Colston et al., 1998; Xie et al., 
1999). UVB1 and EM1, novel non-hypercalcemic vita-
min D analogues, with higher binding affinity to VDR,  
caused a decrease in viability of cells derived from triple 
negative breast cancers and organoids in patient-derived 
xenografts (PDXs) model of breast cancer. The inhibito-
ry effect was stronger than the one observed for calcitri-
ol (Ferronato et al., 2021). BXL0124, a vitamin D analog 
with hypercalcemic toxicity, decreased proliferation of 
breast cancer cells in an in vivo model and inhibited the 
ductal carcinoma in situ progression to invasive ductal 
carcinoma (Wahler et al., 2014). Recently discovered CY-
P11A1-dereived hydroxyderivatives of vitamin D3, such 
as mono-, dihydroxy- and trihydroxy- forms with or 
without the hydroxyl group at position C1α, show anti-
proliferative, pro-differentiation, and anti-inflammatory 
actions (reviewed in Slominski et al., 2017a; Slominski et 

al., 2017b; Slominski et al., 2017c; Chaiprasongsuk et al., 
2019). The anticancer activity of these derivatives is at 
least as strong as that of 1,25(OH)2D3 or even stronger 
(Zbytek et al., 2008; Janjetovic et al., 2009; Janjetovic et 
al., 2010; Li et al., 2010; Slominski et al., 2011; Slominski 
et al., 2012a; Slominski et al., 2013; Slominski et al., 2013; 
Slominski et al., 2017c; Tuckey et al., 2011; Lu et al., 2012; 
Lin et al., 2015; Lin et al., 2016a; Lin et al., 2016b; Lin et 
al., 2018; Chaiprasongsuk et al., 2019), while the calce-
mic effects are weaker or are not observed (Slominski et 
al., 2010; Slominski et al., 2013; Slominski et al., 2014a; 
Slominski et al., 2014b; Wang et al., 2012). The antitu-
mor effects were observed in different cancers, includ-
ing non-melanoma skin cancer (Slominski et al., 2020), 
oral squamous cell cancers (Oak et al., 2020), melanomas 
(Wasiewicz et al., 2015; Slominski et al., 2018) and oth-
ers. Antiproliferative activity of a non-calcemic vitamin 
D derivative, 20(OH)D3, also displayed inhibitory effects 
on proliferation of breast cancer cells (Wang et al., 2012). 
In summary, these studies support the hypothesis related 
to the potential use of these vitamin D analogues as an-
titumor agents to treat breast cancers.

CLINICAL RESEARCH ON BREAST CANCER AND 
VITAMIN D

Since experimental studies demonstrated a very prom-
ising data, some clinical trials have been established. Cur-
rently, 84 clinical trials for breast cancers and vitamin D 
are registered at clinicaltrials.gov: 16 are recruiting, 5 are 
active but not recruiting, 8 are terminated, 48 are com-
pleted, 2 are withdrawn and for 5 the status is unknown; 
13 of these trials are observational and are intervention-
al, 18 of them have the results, but only some of them 
are published. Some studies showed that vitamin D sup-
plementation did not change the mammographic density, 
considered as an indicator of breast cancer risk (Brisson 
et al., 2017; Alipour et al., 2018; Crew et al., 2019). These 
clinical trials showed that the vitamin D level was not 
related to the relapse-free survival, breast cancer-specific 
survival and overall survival (Lohmann et al., 2015). As 
Charehbili and others (Charehbili et al., 2016) had shown, 
the vitamin D serum level decreased during treatment 
with chemotherapy, but no effects on pathological com-
plete response were found. On the other hand, clinical 
trials support the importance of vitamin D supplementa-
tion in the reduction of angiogenic growth factors, such 
as vascular endothelial growth factor A, angiopoietin 2 
and hypoxia-inducible factor 1 in breast cancer patients 
(Shahvegharasl et al., 2020).

CONCLUSIONS

The currently available data suggest that vitamin D 
and its related genes may be of clinical significance in 
breast carcinogenesis. Deregulation of hydroxylases im-
plicated in vitamin D metabolism may abrogate the ef-
fect of local 1,25(OH)2D3 production in tumors. Moreo-
ver, enzymes involved in vitamin D metabolism in the 
breast tissue may be important targets for both, preven-
tion and treatment of breast cancer, including epigenetic 
therapy. Therefore, the plausible effects of vitamin D 
in cancer therapy or prevention have been the principal 
aim of numerous studies. However, there is still a need 
for further studies in this field, especially for analysis of 
vitamin D-related processes in specific molecular sub-
types of breast cancer, as it is possible that different bio-

http://clinicaltrials.gov:
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logical types of breast cancer display a distinct vitamin D 
metabolism. 
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