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Nucleotides are the most common compounds produced 
constantly by living organisms. They are involved in 
most cellular processes like the synthesis of other nu-
cleotides and nucleic acids, generation of energy needed 
for the maintenance of cells, and molecular signaling. In 
the 70s sir. Geoffrey Burstock discovered a new class of 
transmembrane proteins – nucleotide receptors respond-
ing to nucleotides and their derivatives. For historical 
reasons, we distinguish two main classes of nucleotide 
receptors: P1 – which are G protein-coupled adenosine 
receptors, and P2 – nucleotide receptors that respond 
to ATP and its derivatives. Additionally, the P2 recep-
tors family can be divided into two subgroups: P2Y – G 
protein-coupled receptors and P2X cation channel recep-
tors. This paper focuses mainly on the most researched 
receptor in the nucleotide receptors family – the P2X7 
receptor – presenting it in the background of the nucle-
otide signaling landscape. Almost thirty years of exten-
sive studies on the receptor contributed to understand-
ing protein structure, splicing variants, and mechanism 
of action in somatic cells. Despite such a wide spectrum 
of research, the role of the receptor in cancer progres-
sion is still undetermined. In many reports, we can find 
information about the anti-tumorigenic role of this re-
ceptor caused by activation of the cell death mechanism 
after membrane pore formation. These results, however, 
contradict other studies in which the same receptor is 
known to promote cancer development through stimula-
tion of proliferation and activation of pro-survival path-
ways. Ultimately, all this gathered knowledge points to 
two faces of the receptor in tumor progression. There-
fore, we do provide a comprehensive overview of the 
topic. Finally, we also try to systemize previous and re-
cent literature about the role of this receptor in somatic 
and cancer cells and provide access to it in the form of a 
convenient table.
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THE ORIGIN OF NUCLEOTIDE SIGNALING

ATP is the most widespread source of chemical ener-
gy in metabolic processes. This nucleotide can be found 
in all cells of plants, animals, and microorganisms. It is 
constantly produced and consumed in most cellular pro-
cesses, starting from the synthesis of other nucleotides 
by the synthesis of nucleic acids and ending with the 
transport of substances in and out of the cell and the 
generation of mechanical force. ATP molecules are also 
used in situations where chemical synthesis reactions re-
quire energy input or where regulatory processes require 
thermodynamic irreversibility of accompanying reactions. 
The concentration of ATP inside the cell results from 
a balance between the synthesis of new ATP molecules 
and their hydrolysis and is strongly related to the meta-
bolic activity of the cell. Typically, in mammalian cells, 
this value is around 3–5 mM (Jones, 1986; Gorman et 
al., 2007), thus many orders of magnitude are larger than 
those in the extracellular space where it is 1–10 nM (Gi-
uliani et al., 2019).

To fully understand the key role of ATP in the de-
velopment of life on earth, it is necessary to go back to 
the beginning of the evolution of energy metabolism and 
the transmission of information using the genetic code. 
It was in these processes that the first nucleotides played 
an important part. Inorganic phosphates were the basic 
building blocks for the development of life on earth. 
The origin of these compounds on earth is enigmatic, 
some of the authors postulate even the extraterrestrial 
origin of phosphates, present on meteorites hitting the 
earth’s surface at an early stage of the planet’s develop-
ment (Bryant et al., 2013). Without these compounds, it 
would be impossible to create RNA and DNA that still 
exist to this day and play a key role in the transmission 
of genetic information. With the development of life, the 
basic forms of information transmission changed. Initial-
ly, there were only long, self-replicating RNA chains in 
which nucleotides played both a building and energetic 
role (in the case of nucleic acid synthesis). However, 
when the first primitive cells appeared and DNA took 
over the main role of the carrier of the genetic code, 
nucleotides started to play a role as the energy carrier 
(Bada, 2004). Over the centuries, two such carriers have 
emerged: ATP and GTP. ATP participates in the vast 
majority of reactions while GTP is found in a limited 
group of them. The prevalence of ATP in living organ-
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isms may be associated with its greater free energy of 
last phosphate bond hydrolysis than in the case of GTP 
(Denton, 2009; Bazil et al., 2010). Despite the great ad-
vantages of using ATP as an energy carrier, this mol-
ecule has a serious disadvantage. Due to the chemical 
properties of ATP, it is not possible to carry out reac-
tions using this molecule in an environment with a high 
concentration of calcium ions. Combination of calcium 
and ATP results in forming insoluble salts that cannot 
be used by living organisms. While the early earth ocean 
was alkaline, the concentration of calcium ions was low, 
similar to the present level in the cytoplasm (Plattner & 
Verkhratsky, 2016). This property of ATP turned out to 
be disadvantageous when the level of calcium ions on 
earth significantly increased in the pre-ocean (Kazmierc-
zak et al., 2013). This complication led to the formation 
of a system of membranes protecting the inside of the 
cell against an unfavorable environment and a complex 
system of pumps and exchangers on the surface of these 
membranes in which ATP played a key energetic role. 
All these adaptations were to keep the levels of calcium 
ions low inside the cell. To summarize, ATP is needed 
to maintain a constant level of calcium in the cell so that 
ATP can be freely produced and hydrolyzed in it. This 
dependence made ATP and free calcium ions one of 
the most basic signaling molecules in the early stages of 
the evolution of living organisms (Berridge et al., 2003; 
Clapham, 2007).

As mentioned earlier, there is a very steep gradient 
of the ATP concentration between the cytoplasm and 
extracellular medium. Any tissue injury, cell damage, or 
lysis, including platelet aggregation and thrombosis, will 
result in a significant local release of ATP. There are 
also physiological mechanisms of active ATP release, 
such as connexin hemichannels activity (Anselmi et al., 
2008), pannexin channels (Jackson, 2015), and nucleoside 
transporters (Dos Santos-Rodrigues et al., 2014) or ve-
sicular release inactive synapses (Pankratov et al., 2006). 
Thus, the presence of extracellular nucleotides created a 
chance for nucleotide signaling development.

NUCLEOTIDE RECEPTORS

The first report that ATP, apart from its energetic 
function, can act as a neurotransmitter appeared in 1972 
(Burnstock, 1972). Burnstock in his research indicated 
that the intestines and bladder of a guinea pig subjected 
to the action of extracellular ATP would contract inde-
pendently of known neurotransmitters. Initially, the sci-
entific world was skeptical about the idea of nucleotide 
signaling. This opinion was widespread because of earlier 
research that focused mainly on the intracellular process-
es related to the energetic functions of ATP (Gillespie, 
1934; Lipmann, 1941; Meyerhof, 1951; Lo et al., 1968). 
The reluctance of the community was also caused by 
the results of ATP concentration measurements in the 
extracellular environment (1–10 nM outside the cell, 3-5 
mM in the cytoplasm), and the size and charge of the 
molecule, which does not allow it to freely penetrate the 
cell membrane (Chaudry, 1982). In 1976, Burnstock, re-
lying on pharmacological research, defined proteins that 
participated in the cell’s response to extracellular ATP 
calling them purinergic receptors. In the course of fur-
ther pharmacological and molecular studies, he divided 
nucleotide receptors into two groups. Since the signal-
ing role of adenosine was known for half of the century 
already (Drury & Szent-Györgyi, 1929), the first group 
was P1 receptors, stimulated by adenosine, and a new 

group, P2, was created for receptors stimulated by ATP 
and ADP. Further studies at Burnstock’s laboratory led 
to the division of the P2 family into metabotropic recep-
tors or receptors that evoke a cascade of intracellular re-
actions as an effect of binding the ligand (Encyclopedia 
of Pain, 2013) – P2Y – and ionotropic receptors, open-
ing membrane channels after binding the ligand (North, 
2016) – P2X (Burnstock & Kennedy, 1985; Burnstock 
& Verkhratsky, 2012) (Fig. 1). Moreover, studies on the 
conversion of nucleotides after their release into the ex-
tracellular environment have resulted in the discovery of 
enzymes that hydrolyze nucleotides on the surface of the 
cell membrane. This created a more comprehensive pic-
ture of nucleotide signaling (Ziganshin et al., 1994; La-
zarowski et al., 2000). 

P1 FAMILY

The receptors stimulated by adenosine are members 
of the P1 family. They are defined as metabotropic. They 
belong to a diverse group of G-protein coupled recep-
tors (GPCR). The receptors from this group are made 
up of seven transmembrane domains. The P1 family of 
receptors can be divided into four subtypes: A1, A2A, 
A2B, and A3. The homology between the individual sub-
types is approximately 50% (Fredholm et al., 2000). The 
A1 receptor binds to the Gi/0 proteins and the A2A 
receptor to the Gs protein. Activation of the A1 recep-
tor reduces the activity of adenylyl cyclase and stimulates 
the activity of phospholipase C by which there is an in-
crease in the concentration of calcium ions in the cyto-
plasm (Schulte & Fredholm, 2000; Schulte & Fredholm,  
2003). Activation of the A2A receptor increases the ac-
tivity of adenylyl cyclase and activates signaling pathways 
related to MAP kinases (Baraldi et al., 2008; Chen et al., 
2013). The A2B receptor binds to GsGq/11 proteins, 
and the A3 receptor binds to GiGq/11 proteins. Acti-
vation of A2A increases the activity of adenylyl cyclase, 
stimulates the activity of phospholipase C, and activates 
MAP kinases (Sun & Huang, 2016; Bader et al., 2017). 
The stimulation of the A3 receptor reduces the activity 
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Figure 1. Schematic representation of receptors and ligands en-
gaged in the nucleotide signaling. 
The P2 family of receptors respond to ATP, ADP and UTP, and the 
P1 family to adenosine. P2Y receptors and P1 receptors belong to 
big family of G-protein coupled receptors, while P2X receptors are 
membrane channels. The level of nucleotides in the extracellular 
environment is regulated also by ectonucleotidases, which hydro-
lyze nucleotides removing phosphate groups. Nucleotidyltrans-
ferase transfer phosphate group from one nucleoside to another 
while adenosine kinase and adenylate kinase add phosphate 
groups.
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of adenylyl cyclase and activates phospholipase C, which, 
as in the case of the A1 receptor, increases the concen-
tration of calcium ions in the cell. Like all the receptors 
mentioned above, A3 can stimulate the activity of MAP 
kinases (Fishman et al., 2002; Borea et al., 2015). A1 and 
A2A receptors can be stimulated by low adenosine con-
centrations, while the activation of A2B and A3 recep-
tors is associated with the presence of high adenosine 
concentrations in the extracellular environment (Borea et 
al., 2018). P1 family receptors are widely distributed in 
living organisms and play an important role in maintain-
ing cell homeostasis and are crucial for the development 
of pathological conditions.

P2 FAMILY

The P2 receptor family groups two completely unre-
lated subfamilies of nucleotide receptors: metabotropic 
P2Y receptors and P2X receptors acting as ion chan-
nels. The classification of these receptor subfamilies into 
a common P2 family is related to a historical classifica-
tion based on pharmacological characteristics and not on 
a mechanism of action that was unknown at the time. 
Regarding the ligands that activate them, the P2X and 
P2Y receptors are similar. However, in terms of the 
mechanism of action, the P2Y and P2X receptors are 
completely different.

P2Y receptors

The P2Y family consists of metabotropic receptors 
activated by extracellular ATP, UTP, and their deriva-
tives. In terms of molecular structure and mechanisms 
of intracellular signaling, they are GPCR receptors, simi-
lar to P1 adenosine receptors.

The P2Y receptor family is one of the most numer-
ous groups of nucleotide receptors. So far, as many as 8 
different receptor proteins have been discovered: P2Y1, 
P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, P2Y14 (Von 
Kügelgen & Hoffmann, 2016). There are also numerous 
related orphan receptors, receptors similar in sequence 
to the family members but without a known ligand 
(Murakami et al., 2008). An example of such a receptor 
is the P2Y14 receptor, activated by UDP-glucose, first 
known for its gene sequence, then characterized bio-
chemically (Abbracchio et al., 2003). This is the most di-
verse group of nucleotide receptors – the difference in 
sequence between the individual types ranges from 21% 
to 57%.

The receptors from the P2Y family are composed of 
7 transmembrane domains. The ligand-binding site takes 
place in the “pocket” formed by the domains TM3, 
TM6, and TM7 in the cell membrane. The nucleotide af-
finity for this region is related to positively charged ami-
no acids that exhibit electrostatic interactions with phos-
phate residues in the nucleotides. The three-subunit (α, 
β, γ) G proteins are responsible for transmitting signals 
inside the cell. According to the phylogenetic tree based 
on differences in gene sequences, P2Y receptors can be 
divided into two distinct groups. The first includes P2Y1, 
P2Y2, P2Y4, P2Y6, P2Y11 receptors and the second in-
cludes P2Y12, P2Y13, P2Y14 (Schöneberg et al., 2007; 
Von Kügelgen & Hoffmann, 2016). The first group of 
receptors is bound to Gq/11 proteins. Their stimulation 
causes Gq signaling and activation of phospholipase C 
beta (PLCβ). Activation of this enzyme leads to the hy-
drolysis of phosphatidylinositol-(4,5)-bisphosphate (PIP2) 
present in the cell membrane. As a result of hydrolysis, 
two secondary information transmitters are formed: ino-

sitol triphosphate (IP3) and 1,2-diacylglycerol (DAG) 
(Wypych & Barańska, 2020). Water-soluble IP3 diffus-
es from the plasma membrane into the cytoplasm and 
then attaches to inositol trisphosphate receptors (IP3R) 
on the surface of the endoplasmic reticulum. The IP3 
receptors play the role of ion channels that can release 
calcium ions from the endoplasmic reticulum. This re-
sults in an increase in the concentration of calcium in 
the cytoplasm, and then, as a result of a decrease in the 
concentration of calcium ions in the endoplasmic retic-
ulum, voltage-independent calcium channels in the cell 
membrane are opened (Berridge, 1993; Taylor & Thorn, 
2001). As a consequence, the concentration of free calci-
um ions in the cell increases through the influx of ions 
from the intercellular space. This process of secondary 
calcium influx from the extracellular space following the 
emptying of calcium resources in the endoplasmic retic-
ulum is called Store Operated Calcium Entry (SOCE) 
(Hogan & Rao, 2015). The second of the secondary 
transmitters caused by PLCβ activity, DAG, remains in 
the plasma membrane and activates protein kinase C 
(PKC). Active PKC can have an inhibitory effect on the 
receptor itself and PLC by inhibiting PIP2 hydrolysis and 
reducing the strength of the calcium signal. In addition, 
activation of PKC leads to an increase in the activity of 
phospholipase D (PLD) and the MAP kinase pathway 
(Wypych & Barańska, 2020). In summary, the activation 
of P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11 receptors leads 
to the mobilization of calcium ions in the cell. However, 
it should be remembered that GPCR receptors do not 
show 100% specificity for the binding of the α subunits 
of G proteins, and so in the case of the P2Y11 receptor, 
alternative activation may occur related to the binding of 
the Gs protein, which leads to an increase in the activity 
of adenylyl cyclase and, consequently, an increase in the 
level of cAMP in the cell (Kennedy, 2017). The affinity 
of G proteins can also be altered after P2Y receptors 
complex with other membrane proteins. An example is 
the complex of integrin αvβ5 with the P2Y2 receptor, 
under these conditions the receptor can interact with the 
G0 protein activating signal transduction by the Rac1 
protein. Moreover, the conformational change of the 
P2Y2 receptor by integrin αvβ5 causes signal transduc-
tion through the G12 protein and ROCK kinase (Kło-
pocka et al., 2020). The P2Y12, P2Y13, and P2Y14 re-
ceptors belonging to the second group reduce the level 
of cAMP in the cell by inhibiting the activity of adenylyl 
cyclase. In these receptors, intracellular signal transduc-
tion is mediated by the Gi/0 protein.

P2X FAMILY

Receptors from the P2X family are completely unre-
lated to P2Y receptors. P2X receptors are non-selective 
cation channels that open upon stimulation with ATP 
or its synthetic analogs (North, 2016), causing ion cur-
rent flow and depolarization of the cell membrane. Such 
receptors are called ionotropic receptors. The ionotropic 
receptors are not monomers – for the receptor to func-
tion properly, a multi-molecular, oligomeric protein 
complex must be formed, which creates an ion channel 
in the cell membrane. These receptors can form both 
homo- and heterooligomers. A functional P2X receptor 
usually consists of three subunits from which the ion 
channel is created (Ralevic & Burnstock, 1998). The P2X 
receptor subunit consists of two transmembrane regions 
(TM1 and TM2), intracellular C- and N-terminals, and 
an extracellular loop that can undergo many post-trans-
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plantation modifications. The TM1 transmembrane do-
main is involved in the regulation of the conduction of 
channels, while the TM2 domain plays a key role in ion 
channel formation (Khakh et al., 2001). In the extracellu-
lar loop, there are localized binding sites for ATP and al-
losteric regulators (Garcia-Guzman et al., 1997; Clarke et 
al., 2000; Jiang et al., 2000a; Ennion et al., 2000). So far, 
seven genes encoding subunits of the P2X family of re-
ceptors have been discovered, numbered 1 to 7 (North, 
2002). The similarity between the proteins in this family 
ranges from 30 to 50 percent depending on the receptor 
(Fig. 2). P2X family receptors are widely distributed in 
mammalian cell lines and tissues (Burnstock & Knight, 
2004; Burnstock, 2007).

P2X7 receptor

The P2X7 receptor stands out from the P2X family. 
The first reports of this receptor’s existence date back to 
1980, when Cockcroft and Gomperts observed increased 
histamine secretion from rat mast cells upon stimulation 
with high concentrations of extracellular ATP (Cock-
croft & Gomperts, 1980). In 1986 Gordon put forward 
a theory, based on data from pharmacokinetic analyzes, 
of the presence of a new P2Z receptor that can be acti-
vated with low doses of synthetic agonists or high ATP 
concentrations compared to other nucleotide receptors 
(Gordon, 1986). In addition, stimulation of the P2Z re-
ceptor resulted in massive membrane depolarization and 
the formation of a pore in the cell membrane, permeable 
to molecules below 900 kDa (Ferrari et al., 1996; Coutin-
ho-Silva et al., 1996). The identification of the new re-
ceptor took place in 1996 when the surprenant research 
group successfully cloned the rat P2X7 gene and rees-
tablished its activity in human HEK293 cells (Surprenant 
et al., 1996). Since the publication of the above work, re-
search on this type of receptor has begun in other spe-
cies of animals. The receptor was classified into the P2X 
family (Rassendren et al., 1997).

STRUCTURE OF THE GENE ENCODING P2X7

The gene encoding the P2X7 receptor is commonly 
found in all mammals and other vertebrates (Donnelly-

Roberts et al., 2009). The human gene encoding the hu-
man P2X7 receptor (hP2X7) is located on chromosome 
12 at locus q24. This human gene is composed of 53 
733 base pairs of 13 exons, which can create 10 different 
variants of gene splicing (Buell et al., 1998). The structure 
of the receptor gene in mice shows 81% similarity to the 
human gene encoding this receptor. The gene encoding 
the mouse P2X7 receptor is located on chromosome 5 
at locus 62.5 cM (Chessell et al., 1998). The gene encod-
ing the rat P2X7 protein is located on chromosome 12 
at locus q16 and shows 80% homology to the human 
gene (Surprenant et al., 1996). The P2X7 gene in all spe-
cies studied so far consists of 13 exons.

The regulation of P2X7 gene transcription can take 
place with the participation of promoters and enhancers 
of transcription, microRNA, and long coding RNA. So 
far, the structure of human and mouse promoters has 
been studied. The promoter region of the human P2X7 
gene is located between nucleotides –158 to +38 flank-
ing the transcription initiation region (Zhou et al., 2009). 
Additionally, the transcription of the human P2X7 gene 
may be regulated by unknown transcription enhancers 
at the +222 – +323 and +401 – +573 sites by cytosine 
hypermethylation. The promoter region of the gene en-
coding the mouse P2X7 receptor is located between nu-
cleotides –249 to +17 surrounding the transcription start 
site (García-Huerta et al., 2012). Additionally, transcrip-
tion enhancers responsive to stimulation by retinol (vi-
tamin A) have been identified in the mouse gene (Heiss 
et al., 2008; Hashimoto-Hill et al., 2017). Interestingly, in 
studies on the human P2X7 receptor, an opposite effect 
was observed. The administration of retinol decreased 
the level of the P2X7 receptor in cells of neuronal origin 
in humans (Wu et al., 2009; Orellano et al., 2010).

P2X7 mRNA can also be efficiently regulated by 
miRNA (microRNA) molecules. The miR-186 molecule 
can lower the P2X7 transcript level in podocytes in the 
kidney (Sha et al., 2015). On the other hand, the miR-
150 molecule in mice lowers the level of P2X7 recep-
tor in the lung epithelium, while regulating the level of 
surfactant secretion by these cells (Weng et al., 2012). 
Moreover, miR-150 may have a cardioprotective effect 
on cardiomyocytes in a mouse model of cardiac ischemia 
(Tang et al., 2015) by regulating the apoptosis of dam-
aged cells. Regulation of P2X7 levels by microRNA 
molecules is also possible in cancer cells. The miR-150, 
miR-186, and miR-21 molecules that lower the P2X7 
transcript are overproduced in breast, cervical, bladder, 
and lung cancers (Zhou et al., 2008; Huang et al., 2013; 
Boldrini et al., 2015). Additionally, the P2X7 receptor 
after stimulation can cause the release of microvesicles 
and exosomes from melanoma cells containing mRNA 
(Pegoraro et al., 2021a).

The last known possibility of regulating the transcrip-
tion level of the P2X7 gene is by long-noncoding RNA 
(lncRNA). Small interfering RNAs complementary to 
lncRNA NONRATT021972 lower P2X7 receptor lev-
els in many pathological conditions such as neuropathic 
pain (Liu et al., 2016), myocardial hypoxia (Zou et al., 
2016; Tu et al., 2016), and under metabolic stress (Xu 
et al., 2016; Li et al., 2016a). siRNA complementary to 
lncRNA uc.48+ reduces the level of P2X7 receptors in 
neurons of diabetic rats (Wu et al., 2016).

THE PROTEIN STRUCTURE OF THE P2X7 RECEPTOR

A functional P2X7 receptor, like all P2X family recep-
tors, is composed of at least three subunits encoded by 
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Figure 2. Cladogram of the relationships between P2X family 
members in the form of a phylogenetic tree. 
The percentages show the degree of amino acid chain similarity 
between the individual receptors. The abbreviations stand for: h, 
human receptor protein; r, rat receptor protein; m, mouse recep-
tor protein; g, guinea pig receptor protein; c, chicken receptor 
protein. Modified from (North & Surprenant, 2000).
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the P2RX7 gene. In the structure of the subunit, two 
transmembrane domains, the extracellular loop (with 
ATP binding sites) and the intracellular N- and C-termi-
nus, can be distinguished. N-terminus regulates the flow 
of calcium ions through the ion channel and is responsi-
ble for the activation of signal kinases (Amstrup & No-
vak, 2003; Liang et al., 2015) (Fig. 3). The C-terminus 
of the P2X7 receptor is significantly longer than that 
in other P2X family receptors. It is postulated that this 
part is responsible for the oligomerization of the recep-
tor protein and pore formation (Kim et al., 2001; Smart 
et al., 2003; Costa-Junior et al., 2011; Kopp et al., 2019). 
Moreover, there is also a binding site for lipopolysaccha-
ride at the C-terminus, which demonstrates the impor-
tant role of this receptor in the regulation of inflamma-
tory processes (Denlinger et al., 2001; Leiva-Salcedo et al., 
2011). Additionally, this terminus contains domains that 
can interact with other proteins (Surprenant et al., 1996).

Post-translational modifications of the P2X7 receptor

The P2X7 receptor protein can undergo many post-
translational modifications such as phosphorylation/
dephosphorylation, N-glycosylation, palmitoylation, and 
ADP-ribosylation.

There are several putative sites at the C-terminus of 
the receptor where phosphorylation may occur (Y382-
384). Studies on the phosphorylation pattern of this re-
gion in human microglia have shown a significant role 
of this receptor in the regulation of pain and tolerance 
to opioids (Leduc-Pessah et al., 2017). An interesting fact 
is that these modifications did not affect the ion perme-
ability of the P2X7 receptor channel. The C-terminus 
of the P2X7 receptor can also be palmitoylated. This 
modification is associated with interactions between the 
receptor and the cell membrane. The targeted mutagen-
esis of the palmitoylation site influenced the presence 
of the receptor in the plasma membrane. Cells with a 

mutant P2X7 receptor variant incapable of palmitoyla-
tion had decreased levels of this receptor in the plasma 
membrane but high levels in the endoplasmic reticulum 
(Gonnord et al., 2009).

The region which undergoes N-glycosylation is the ex-
tracellular loop. Five places can undergo this modifica-
tion: N187, N202, N213, N241, and N284. The pattern 
of glycosylation may vary depending on the type of tis-
sue (Lenertz et al., 2010). N-glycosylation, in addition to 
affecting the level of the receptor in cells, also causes 
changes in signal transduction inside the cell. Site-direct-
ed mutagenesis at N187 blocked modification of this 
site, resulting in decreased P2X7 receptor activity (Di 
Virgilio et al., 2018).

The last known post-translational modification that 
the P2X7 receptor can undergo is ADP-ribosylation. 
This modification causes an alternative, permanent acti-
vation of P2X7 by mimicking the attachment of ATP in 
the active site. ART2.1 and ART2.2 enzymes ribosylate 
the P2X7 receptor at site R125, at the hypothetical ATP 
binding site, resulting in its constant activation and a 
decrease in the affinity for extracellular ATP (Adriouch 
et al., 2001, 2008). This modification has only been ob-
served in rodents as the ART2.1 and ART2.2 enzymes 
needed for this process are not present in human tissues 
(Haag et al., 1994).

P2X7 protein splicing variants

So far, 10 splicing variants of the gene encoding the 
human P2X7 receptor have been identified (Pegoraro et 
al., 2021b) (Fig. 4). The variant that is responsible for 
the full and functional structure of the receptor subunit 
was named P2X7A, while the subsequent variants result-
ing from alternative splicing were named with the letters 
B to J. However, the conducted studies showed that only 
3 of the truncated protein variants can form receptor 
subunits. These are P2X7B, P2X7H, and P2X7J (Feng et 
al., 2006; Adinolfi et al., 2010; Giuliani et al., 2014). The 
P2X7B isoform is characterized by a short carboxyl frag-
ment compared to the P2X7A isoform. This isoform, 
364 amino acids long, forms a functional ion channel 
which, due to the truncated carboxyl fragment, cannot 
form a functional pore in the cell membrane. Long-term 
stimulation with P2X7B does not lead to cell death and 
promotes the formation of pores in the cell membrane. 
Moreover, the presence of this isoform may intensify 
proliferation by stimulating the NFAT1 transcription fac-
tor with calcium ions (Adinolfi et al., 2010). Another iso-
form – P2XH with a length of 274 amino acids – forms 
a non-functional ion channel (Cheewatrakoolpong et al., 
2005). The last of the receptor isoforms detected at the 
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Figure 3. Structure of the functional trimer P2X7. 
(A, C) P2X7 receptor in an unstimulated state with a closed ion 
channel. (B and D) P2X7 receptor stimulated by extracellular ATP 
with an open ion channel modified according to (Wei et al., 2016, 
on Creative Commons Licence CC BY 4.0).
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protein level is the P2X7J isoform. It is composed of 
258 amino acids and can form, together with the P2X7A 
isoform, non-functional heterotrimers. Such a hetero-
trimer increased the resistance of cervical cancer cells to 
extracellular ATP without causing cell death (Feng et al., 
2006).

In rodents, four splice variants were also detected for 
the gene encoding the P2X7 subunit (P2X7B, P2X7C, 
P2X7D, P2X7K) along with the canonical P2X7A iso-
form composed of 595 amino acids. The P2X7B and 
P2X7D isoforms can form heterodimers with the 
P2X7A isoform, reducing the activity of the P2X7 re-
ceptor constructed in this way. The P2X7K isoform, 
composed of 592 amino acids, after the creation of the 
P2X7 receptor has a greater affinity for ATP than the 
receptor composed of subunits of the P2X7A isoform 
(Schwarz et al., 2012).

This clear image is somehow obscured by the exist-
ence of nfP2X7 form, defined by the binding of the 
specific antibody, raised against amino acid sequence 
200-216, with particular conformation present in tumor 
cells P2X7 receptor (Gilbert et al., 2019). However, the 
mechanism of the epitope presentation is unknown, and 
we do not know if nfP2X7 is another isoform produced 
in certain circumstances or some modification of the 
wild protein. It was shown that nfP2X7 is widely pre-
sent both in cells able to open P2X7-dependent pore as 
well as those unable to open membrane pore, its pres-
ence was confirmed in prostate cancer cells (LNCaP, 
PC3, DU 145), KELLY neuroblastoma, Ramos (RA-1) 
lymphoma. Antibodies against nfP2X7 passed the first 
stage of clinical trials in basal cell carcinoma (Gilbert et 
al., 2017).

ACTIVATION OF THE P2X7 RECEPTOR

The P2X7 receptor, like all receptors in this group, is 
activated upon stimulation with extracellular ATP. How-
ever, compared to other P2X receptors, the ligand con-
centration needs to be higher, from 50 µM to 2.5 mM. 
The concentration that effectively activates the receptor 
varies from species to species (Surprenant et al., 1996; 
Rassendren et al., 1997; Fonfria et al., 2008; Roman et al., 
2009; Bradley et al., 2011).

The P2X7 receptor can also be activated by syn-
thetic ATP analogs such as 2(3)-O-(4-benzoylbenzoyl) 
ATP (BzATP) and adenosine 5-(γ-thio) triphosphate 
(ATPγS). BzATP has about 10 times greater affin-
ity for the P2X7 receptor than ATP. The exception 
is that the P2X7 receptor derived from guinea pig 
(Fonfria et al., 2008). In this case, BzATP activates 
the P2X7 receptor only slightly stronger than ATP 

itself. ATPγS activates P2X7 originating from mice, 
rats, dogs, and humans. What is important, the level 
of P2X7 activation with ATPγS is significantly low-
er compared to the P2X7 activation with BzATP and 
ATP (Donnelly-Roberts et al., 2009; Spildrejorde et al., 
2014) (Table 1).

An interesting and characteristic of P2X7 activation 
is its regulation by lipopolysaccharide from gram-nega-
tive bacteria (LPS). Inserting a genetic construct inside 
the cell that causes the production of LPS in the cy-
toplasm, stimulates caspase 11 that activates the pan-
nexin-1 channel by cleaving. This results in increased 
release of ATP into the extracellular environment and 
activation of P2X7 (Yang et al., 2015). Moreover, it is 
postulated that LPS may increase the sensitivity of the 
P2X7 receptor to extracellular ATP by binding to the 
cytoplasmic LPS binding domain in this receptor and 
conformational changes (Denlinger et al., 2001).

Reports are indicating a positive role of cathelicidins 
in the regulation of P2X7 receptor activity. The anti-
bacterial LL-37 peptide belonging to this family acti-
vated the P2X7 receptor, causing the maturation and 
release of IL-1β (Elssner et al., 2004). Studies by other 
research groups, however, indicate that LL-37 does not 
activate the P2X7 receptor directly but acts as an al-
losteric ATP sensitivity enhancer (Pochet et al., 2006; 
Tomasinsig et al., 2008). The activity of P2X7 can be 
regulated similarly by numerous substances such as 
tenidap (Sanz et al., 1998), polymyxin B (Ferrari et al., 
2004), clemastine (Nörenberg et al., 2011), ivermectin 
(Nörenberg et al., 2012) and ginsenosides (Helliwell et 
al., 2015). The positive allosteric modulator of P2X7 
was successfully employed in cancer with its ability to 
negatively control the growth and development of lung 
tumor by potentiating αPD-1 treatment (Douguet et al., 
2021).

P2X7 RECEPTOR INHIBITION

During intensive research on the P2X7 receptor, many 
chemical compounds were developed that could inhibit 
its activity. Each of these antagonists differs in receptor 
affinity, mechanism of action, and species specificity.

The first generations of P2X7 inhibitors were not 
very specific – apart from inhibiting, P2X7 also af-
fected the activity of other P2 family receptors (Gever 
et al., 2006). Examples of such inhibitors are PPADS 
(pyridoxalphosphate-6-azophenyl-2’,4’-disulfonic acid) 
(Lambrecht et al., 1992; Valera et al., 1994) and suramin 
(Urbanek et al., 1990), which blocked also other recep-
tors from the family: P2X, P2Y, and P1. A much more 
specific inhibitor of the first generation P2X7 was oxi-

Table 1. Summary of the activity of P2X7 receptor agonists depending on the species and agonist used. 
Based on (Bartlett et al., 2014).

Species Sequence identity (%)
EC50 (μM)

ATP BzATP

Human (Homo sapiens) 100 96 5

Rhesus macaque (Macaca mulatta) 96 800 58

Dog (Canis familiaris) 85 1148 21

Rat (Rattus norvegicus domestica) 80 85 4

Mouse BALB/c (Mus musculus) 80 200 60

Mouse C57BL/6 (Mus musculus) 80 162 36

Guinea pig (Cavia porcellus) 77 603 >200
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dized adenosine triphosphate (oxATP) (Murgia et al., 
1993), which binds irreversibly to the P2X7 receptor. 
However, further research has shown that it is not an 
ideal antagonist. In addition to the irreversible inhibi-
tion caused by covalent changes in the protein struc-
ture, oxATP can also inhibit the activity of P2X2 and 
P2X3 receptors (Evans et al., 1995).

One of the most widely used first-generation P2X7 
inhibitors is Brilliant Blue G (BBG), also known as 
the Coomassie brilliant blue (Soltoff et al., 1989; Jiang 
et al., 2000b). This inhibitor has the greatest affinity 
for the rat P2X7 receptor, blocking it at nanomolar 
concentrations. It is a relatively cheap and non-toxic 
inhibitor; however, it should be mentioned that it is 
not without its drawbacks. BBG can inhibit the activi-
ty of other P2X receptors such as P2X1, P2X2, P2X3, 
and P2X4 (Jiang et al., 2000b). Moreover, there are re-
ports of pannexin-1 inhibition by BBG (Qiu & Dahl, 
2009; Dahl et al., 2013). It is also worth mentioning 
that BBG is a dye that can cause problems in some 
applications.

With the development of new screening methods 
and the understanding of the exact protein structure of 
the P2X7 receptor, second-generation inhibitors have 
emerged. Their development was a result of the grow-
ing attention in the pharmaceutical industry, which re-
sulted from the recognition of the important role of the 
P2X7 receptor in the regulation of inflammation (Di 
Virgilio et al., 2017) and neuropathic pain (Zhang et al., 
2020). The second P2X7 antagonists also had the abil-
ity to cross the blood-brain barrier, which, apart from 
the first-generation inhibitor – BBG – had not been 
possible before (Peng et al., 2009; Apolloni et al., 2021). 
The first-generation P2X7 inhibitors were mainly based 
on in vitro studies and were found to be often unsuitable 
for in vivo use. This was due to the rapid degradation of 
the inhibitor after administration to the animal and its 
poor pharmacokinetic parameters (Bartlett et al., 2014). 
New generation inhibitors, which include molecules such 
as CAY10593, A-839977, AACBA hydrochloride, and 
1-Benzyl-5-aryltetrazoles, are characterized by increased 
efficiency compared to the first generation and greater 
bioavailability in the in vivo systems (Nelson et al., 2006; 
Michel et al., 2007; Broom et al., 2008; Honore et al., 
2009; Letavic et al., 2013; Pupovac et al., 2013).

Alternatives to inhibitors in the form of small chemi-
cal molecules are monoclonal antibodies and single-
domain antibodies (sdAb, nanobodies) directed against 
the P2X7 receptor. Administration of the anti-P2X7 
antibody reduced inflammation in a mouse model of 
ulcerative colitis (Kurashima et al., 2012). On the oth-
er hand, the use of nanobodies directed against P2X7 
reduced allergic contact dermatitis in an in vivo mouse 
model (Danquah et al., 2016). Anti-P2X7 antibodies can 
also bind to short or non-functional isoforms of the re-
ceptor (Barden et al., 2003). The use of the anti-P2X7 
antibody decreased the activity of the P2X7 receptor in 
murine B16 melanoma cells resulting in a reduction in 
tumor size (Gilbert et al., 2017).

The inhibition of the P2X7 receptor may also be in-
fluenced by the extracellular ion concentration. A high 
concentration of magnesium ions Mg2+ can reduce 
channel activity upon ATP stimulation in rat and hu-
man cells (Rassendren et al., 1997). Further studies of 
this phenomenon showed the influence of other ions 
such as calcium, zinc and copper on the activity of 
P2X7. The concentration of hydrogen ions (pH) also 
had a significant effect on the P2X7 activity (Virginio 
et al., 1997).

FUNCTIONS AND PHYSIOLOGY OF THE P2X7 
RECEPTOR IN NORMAL CELLS

Regulation of interleukin secretion to the extracellular 
environment

One of the most extensively studied molecular func-
tions of the P2X7 receptor is its participation in the 
development of inflammation. More specifically, P2X7 
takes part in the formation of the NLPR3 inflam-
masome, and then in the maturation and release of in-
terleukin 1β to the extracellular environment by macro-
phages and other cells of the immune system (Gudipaty 
et al., 2003; He et al., 2013). Interleukin 1β is one of the 
most studied pro-inflammatory interleukins. It takes an 
active part in the defense of the cell against pathogens 
and in many metabolic, autoimmune and cancer diseases 
(Dinarello, 1994, 2018; Macarthur et al., 2004).

The secretion of interleukin takes place in two stages. 
In the first stage, pro-interleukin 1β and components of 
the NLPR3 inflammasome are synthesized by stimula-
tion of the transcription factor NF-κβ. This factor is ac-
tivated when the cell is exposed to specific pathogen-as-
sociated molecular patterns (PAMP). An example of 
such a pattern is extracellular LPS, which by combining 
with lipopolysaccharide-binding protein (LBP) and CD14 
protein forms complexes activating the toll-like receptor 
4 – TLR4. The second stage involves inflammasome as-
sembly, caspase 1 activation, and the release as well as 
the maturation of interleukin 1β. Extracellular ATP acti-
vates the P2X7 receptor located on the outer membrane 
of the immune system cells, acting as a non-selective ion 
channel and causing the penetration of calcium (Ca2+) 
and sodium (Na+) ions into the cell interior following 
the concentration gradient. At the same time, potassi-
um (K+) ions are released from the cell following the 
concentration gradient, which is a key phenomenon in 
the production of interleukin 1β (Perregaux & Gabel, 
1994; Muñoz-Planillo et al., 2013). A sudden decrease in 
the level of potassium in the cell causes the activation 
of caspase 1 (Kahlenberg & Dubyak, 2004). An adapt-
er molecule ASC (apoptosis-associated speck-like protein 
containing a CARD), which has a CARD (caspase ac-
tivation and recruitment domain) domain, binds to the 
overproduced in the first stage NLPR3 protein. This do-
main enables enhanced caspase 1 activation by cleavage 
of pro-caspase. The active caspase performs the proteo-
lytic cleavage of the immature form of IL-1β from the 
35 kDa form to the 18 kDa active form (Gross et al., 
2011). The altered cytokine is released from the cell in-
ducing inflammation.

Experiments with mice lacking the gene encoding the 
P2X7 receptor demonstrated its key role in the forma-
tion of the NLPR3 inflammasome (Solle et al., 2001). 
These mice showed decreased levels of IL-1β and IL-6 
production after ATP stimulation, which may indicate 
the role of the P2X7 receptor in the pro-inflammatory 
response.

The role of the P2X7 receptor in other pro-
inflammatory pathways

The P2X7 receptor is also involved in the secretion 
of prostaglandins into the extracellular environment. In 
murine macrophages, stimulation of the P2X7 receptor 
results in the secretion of prostaglandin E2, thrombox-
ane B2, and leukotriene B4 (Barberà-Cremades et al., 
2012). Activated P2X7 may also affect the hydrolysis of 
arachidonic acid, which is a substrate for the synthesis 
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of cyclooxygenase, and prostaglandin E2, which together 
play an important role in inflammation, fever, and pain 
(El Ouaaliti et al., 2012). Moreover, P2X7 activation is 
observed in damaged tissues where the inflammatory in-
filtration begins. Extracellular ATP stimulation of murine 
Kupffer cells induced necrotic death of these cells and 
the release of large amounts of prostaglandin E2 and IL-
1β (Toki et al., 2015). The above studies indicate P2X7 
as an interesting target for the treatment of inflammation 
that could be an alternative to cyclooxygenase inhibitors 
(Barberà-Cremades et al., 2012).

Stimulation of the production of reactive oxygen and 
nitrogen species

Reactive oxygen species (ROS) are a common signal-
ing element in a living cell. The enzymes of the respira-
tory chain, present in every actively metabolizing cell, 
while conducting oxidative phosphorylation produce 
large amounts of reactive oxygen and nitrogen species 
(Hoffman & Brookes, 2009), normally reduced by anti-
oxidative systems (Bae et al., 2011). Reactive oxygen spe-
cies produced by macrophages and microglia play a pro-
tective role against microbial invasion.

In many pathological conditions such as cancer or 
metabolic diseases, the level of free radicals is much 
higher than in normal cells (Liou & Storz, 2010; Alfadda 
& Sallam, 2012; Galadari et al., 2017). Nucleotide signal-
ing can stimulate the production of reactive oxygen spe-
cies. The P2X7 receptor in microglia and macrophage 
cells by influencing the phosphorylation of NADPH oxi-
dase increases the production of reactive oxygen species. 
The molecular mechanism of this activation is unclear, 
but it is known from the literature that NADPH oxidas-
es can be activated by many pathways related to calcium 
signaling, for example, protein kinase C, mitogen-acti-
vated protein kinases p38 and ERK1/2, and phosphati-
dylinositol 3-kinase (Guerra et al., 2007; Martel-Gallegos 
et al., 2013).

It has been observed that the continuous stimulation 
of the P2X7 receptor by low ATP concentrations does 
not cause cell death but increases the polarization of the 
mitochondrial membrane through an increased level of 
free calcium ions in the cytoplasm and thus also in the 
mitochondria. This calcium influenced oxidative phos-
phorylation, which stimulated cellular metabolism and 
influenced cell survival in conditions of extracellular glu-
cose deprivation (Adinolfi et al., 2005; Amoroso et al., 
2012).

Creating a cell membrane pore

The unique property of the P2X7 receptor, which dis-
tinguishes it from all other receptors in the P2X fam-
ily, is its dual nature. In addition to the non-selective 
cation channel, activated P2X7 can induce the formation 
of a membrane pore, the opening of which leads to the 
penetration of large molecules (above 900 kDa) and cell 
death (Surprenant et al., 1996; Rassendren et al., 1997). 
With prolonged stimulation with P2X7 agonists, the 
penetration into the cell of organic cations such as N-
methyl-D-glucamine increases (Jiang et al., 2005), a cation 
that is much larger than calcium, potassium, or sodium 
ions. The time of pore formation varies and depends on 
many factors, such as the type of cell line, the splice var-
iant of the P2X7 receptor protein, and the agonist with 
which it is stimulated.

So far, two potential mechanisms of cell pore forma-
tion following stimulation of the P2X7 receptor have 
been presented. The first is associated with a protein 

that directly interacts with the P2X7 receptor - Pan-
nexin-1. Many reasons point to the crucial role of this 
protein in the formation of the cell pore (Monif et al., 
2009; Suadicani et al., 2012). Experiments with small 
interfering RNA, complementary to the gene encod-
ing Pannexin-1, showed that lowering the level of this 
protein in the THP-1, 1321 N1 and J774 cell lines sig-
nificantly inhibited the penetration of large fluorescent 
molecules after P2X7 receptor stimulation (Pelegrin & 
Surprenant, 2006; Locovei et al., 2007; Iglesias et al., 
2008). Moreover, the credibility of this theory is con-
firmed by experiments using the co-immunoprecipita-
tion technique, which showed a direct interaction of 
the P2X7 receptor with Pannexin-1 (Li et al., 2011; 
Poornima et al., 2012).

Experiments using murine macrophages with a deleted 
gene encoding Pannexin-1 suggest the existence of other 
mechanisms. These cells, despite the lack of Pannexin-1, 
showed no reduction in the efficiency of penetration of 
dyes into the cell interior (Qu et al., 2011; Lemaire et al., 
2011).

Moreover, in HEK293 cells with a constant, increased 
level of the P2X7 receptor, penetration of only cationic 
dyes such as Yo-Pro-1 and ethidium bromide was ob-
served. In murine macrophages, penetration of cationic 
dyes through the pore was observed while anionic dyes 
penetrated by diffusion (Schachter et al., 2008; Cankurta-
ran-Sayar et al., 2009).

Effect of P2X7 receptor activation on cell membrane 
reorganization

The P2X7 receptor is one of the many proteins in-
volved in the organization of the cell membrane struc-
ture. The mechanism of this activity is poorly under-
stood, but the stimulation of extracellular ATP in some 
cell types may lead to the formation of numerous vesi-
cles and bulges in the cell membrane, shortly after the 
agonist administration (MacKenzie et al., 2001). Several 
candidates are postulated as the proteins responsible for 
changes in the cell membrane. The Rho-associated pro-
tein kinase 1 (ROCK1) (Morelli et al., 2003) is suspected 
to be a regulator behind this effect. The heat shock pro-
tein HSP90 is an inhibitor of the effects observed in the 
cell membrane (Adinolfi et al., 2003). The EMP2 protein 
interacts directly with the C-terminus of the P2X7 recep-
tor, which may indicate a link between changes in the 
structure of the cell membrane and the formation of 
the cell pore following stimulation of the P2X7 receptor 
(Wilson et al., 2002). Expression of the P2X7 receptor is 
also observed in leukocyte cells where it is postulated to 
be responsible for the reorganization of the cell mem-
brane prerequisite for cell migration through blood ves-
sels and the extracellular matrix (Qu & Dubyak, 2009). 
Moreover, the appearance of vesicles in the plasma 
membrane following P2X7 receptor stimulation is con-
sidered to be the first step in the formation of extracel-
lular vesicles. The activated release of microvesicles and 
exosomes is a result of the P2X7 stimulation with a high 
concentration of ATP (Lombardi et al., 2021; Vultaggio-
Poma et al., 2022). The triggered release of the extracel-
lular vesicles was not only observed in the immune and 
central nervous system cells but also in the melanoma 
cells, which indicates the pro-metastatic activity of the 
P2X7 receptor (Pegoraro et al., 2021a).

Regulation of cell death

It is not surprising that the P2X7 receptor is involved 
in the regulation of cell death since one of the recep-
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tor’s domains localized at the C-terminus is similar to 
the death domain in the tumor necrosis factor recep-
tor 1 (TNF-R1), which is involved in the induction of 
apoptosis (Zanovello et al., 1990; Chow et al., 1997; Den-
linger et al., 2001). Initially, activation of this receptor 
was thought to lead to necrotic cell death (Di Virgilio 
et al., 1989). However, further research has shown that 
P2X7 is involved in other types of cell death. In the lit-
erature, we can find information about the induction of 
pyroptosis, a form of lytic programmed cell death (Yang 
et al., 2015), necroptosis, a programmed form of necro-
sis (Dubyak, 2012), and autophagy (Young et al., 2015). 
There are also documented cases of characteristic mark-
ers of different types of cell death within the same cell. 
In ATP-stimulated mouse lymphocytes, cell shrinkage 
was first observed, which is characteristic of apoptotic 
death, and then after a few minutes, the treated cells dis-
integrated as in necrotic death (Taylor et al., 2008).

The ability to activate cell death depends on the splice 
variant of the receptor present in the affected cell. Ac-
tivation of the P2X7B receptor variant did not result in 
cell death in transfected HEK293 cells (Adinolfi et al., 
2010).

In conclusion, the great majority of the P2X7 recep-
tor does not induce apoptotic death. The most common 
type of cell death when the P2X7 receptor is activated is 
necrosis. Moreover, receptor activation does not always 
lead to any cell death – it depends on the type of cells 
and the receptor isoform (Di Virgilio et al., 2017).

Stimulation of cell division

As mentioned in the previous section, the P2X7 re-
ceptor has long been recognized as a factor leading to 
cell death (Di Virgilio et al., 2017). However, intensive 
research using various cell lines and receptor assembly 
variants has shown that P2X7 may also play a com-
pletely different role. The first experiments with lym-
phocytes transiently transfected with P2X7 receptor 
showed increased proliferation of these cells upon ATP 
stimulation (Baricordi et al., 1999). In T cells, P2X7 re-
ceptor activation stimulated autocrine secretion of ATP 
and interleukin-2 into the environment. IL-2 stimulated 
the activation of transcription factors in T lymphocytes, 
which as a result increased their proliferation intensity 
in BALB/c mice (Yip et al., 2009). Studies on alterna-
tive receptor splicing variants have suggested that it 
is the shorter P2X7B isoform lacking the C-terminal 
fragment that increases the intensity of proliferation 
(Adinolfi et al., 2005, 2010). Additionally, experiments 
conducted with the use of microglial cells showed the 
significant role of the P2X7 receptor in stimulating cell 
proliferation. Inhibition of P2X7 activity by inhibitors 
or derivation of a cell line with a mutant receptor vari-
ant (G345Y) significantly decreased the intensity of mi-
croglial proliferation (Bianco et al., 2006; Monif et al., 
2009; Monif et al., 2010).

FUNCTIONS OF P2X7 IN CANCER CELLS

The P2X7 receptor is as common in cancer cells as it 
is in somatic cells. Stress-related to intra-tumor hypoxia 
and cancer cell death as a result of chemotherapy or 
radiotherapy (Martins et al., 2009; Lecciso et al., 2017) 
may increase the release of ATP into the environment. 
In addition, the presence of tumor-specific proteins 
such as SLC29A1, SLC29A2, and SLC28A1-A3 nucleo-
side transporters may significantly affect the increased 
concentration of ATP in the tumor environment (Gray 

et al., 2004; Young et al., 2013). The observed effect 
of the increased concentration of extracellular nucleo-
tides on cancer depends, however, on the type of tissue 
from which the tumor originates. Therefore, it should 
be described in some detail how different the P2X7 re-
ceptor response may be depending on the cancer type. 
The chapter is summarized in Table 2.

P2X7 in prostate cancer

Developing prostate cancer is characterized by a 
high expression of mRNA encoding the P2X7 re-
ceptor as compared to normal tissue (Ravenna et al., 
2009). Immunohistochemical studies, using fragments 
of postoperative prostate tumors from 116 different 
cases, demonstrated a high level of the P2X7 recep-
tor protein (Slater et al., 2004a). Moreover, the level 
of this protein has correlated with high expression of 
prostate-specific antigen (PSA) which is known and 
widely used as a marker of prostate cancer malignancy 
(Slater et al., 2005). These reports indicated that the 
level of the P2X7 receptor could be used as a neg-
ative prognostic factor in the development of this 
type of cancer. It was also noticed that the level of 
the P2X7 receptor protein correlates with the level of 
receptors supporting cell division, such as the epider-
mal growth factor receptor (EGFR) and the estrogen 
receptor alpha (ERα), which may indicate the signif-
icant roles of P2X7 in promoting a more malignant 
tumor (Ravenna et al., 2009). In addition, functional in 
vitro studies using prostate cancer cell lines showed in-
creased aggressiveness and invasiveness of these lines 
after stimulation of the P2X7 receptor by extracellu-
lar ATP (Ghalali et al., 2014; Qiu et al., 2014). More-
over, in the PC-3M human prostate carcinoma cell 
line where functional P2X7 was highly expressed, the 
involvement of the receptor in ATP-promoted inva-
sion and metastasis of cancer was inevitable (Qiu et 
al., 2014). What is more, in patients with metastatic 
prostate cancer, the genetic interactions between sin-
gle-nucleotide polymorphisms (SNPs) in VEGFR-2 
and P2X7 receptors were examined. This analysis in-
dicated that a few SNPs in the VEGFR-2 and P2X7 
receptor genotypes may be able to pinpoint a popula-
tion of prostate cancer patients with a better progno-
sis of survival (Solini et al., 2015).

P2X7 in bone tumors

High levels of the P2X7 receptor have been detect-
ed in many types of tumors of the skeletal system. In 
osteosarcoma, Ewing’s sarcoma, and chondrosarcoma, 
an increased level of the P2X7 receptor was detected 
as compared to healthy tissues (Gartland et al., 2001; 
Alqallaf et al., 2009; Liu & Chen, 2010). Cell lines de-
rived from the backbone are characterized by a wide 
variety of P2X7 receptor isoforms. The cells of the 
SaOs-2 lineage express a functional P2X7 receptor ca-
pable of forming a pore in the plasma membrane and 
stimulation of these cells by ATP or BzATP causes in-
creased cell death (Gartland et al., 2001). On the other 
hand, in the HOS line, administration of extracellular 
ATP to the culture medium did not cause cell death 
but increased proliferation (Liu & Chen, 2010). Addi-
tionally, when it comes to the properties of the P2X7B 
split variant in human cancer cell lines, its expression 
decreased adherence and increased invasion and migra-
tion of cells, exhibiting a metastatic phenotype (Tatter-
sall et al., 2021).
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P2X7 in skin cancers

P2X7 receptor protein immunodetection in biopsy 
tissue material from patients suffering from skin cancer 
showed higher average levels of this receptor compared 
to normal tissues. Increased synthesis of P2X7 receptor 
protein has also been observed in normal keratinocyte 
cells surrounding the tumor (Slater et al., 2003; White et 
al., 2005). Increased levels of the P2X7 receptor protein 
can be found in both animal and human cell lines. In 
spontaneous murine B16 melanoma, the level of P2X7 
receptor synthesis may influence the survival of tumor 
cells after radiotherapy. The use of a combination of 
radiotherapy and P2X7 receptor inhibitors significant-
ly increased the treatment efficiency (Tanamachi et al., 
2017). Many studies have shown that the administration 
of P2X7 receptor inhibitors alone significantly inhibited 
the development of tumors derived from murine B16 
melanoma (Adinolfi et al., 2015; De Marchi et al., 2019; 
Brenet et al., 2021). Moreover, an increase in tumor-
infiltrating T cells that express low levels of CD39 and 

CD73 is another effect of P2X7 pharmacological inhi-
bition in B16-derived tumors (De Marchi et al., 2019). 
When it comes to B16 melanoma, the stimulation by ex-
tracellular ATP caused the formation of the cellular pore 
but it did not significantly affect cell death (Tanamachi et 
al., 2017). Studies of human melanoma cells contained in 
the NCI-60 matrix have shown that increased expression 
of mRNA encoding the P2X7 receptor is a characteristic 
feature common to all melanoma cells (Shankavaram et 
al., 2009; Reinhold et al., 2012). Moreover, in both the 
human A375 melanoma line and in the murine B16 line, 
the major variant of the P2X7 receptor is the one capa-
ble of pore formation in the plasma membrane (White et 
al., 2005).

P2X7 in pancreatic cancer

Increased expression of mRNA encoding the P2X7 
receptor has been detected in patients with chronic pan-
creatitis and pancreatic cancer (Künzli et al., 2007). The 
P2X7 receptor protein has also been detected in cell 

Table 2. Summary of the P2X7 receptor presence and activity in the cancer biology.

Type of cancer
Expression of P2X7 re-
ceptor (cancer/healthy 
tissues)

P2X7 variants Variants capable of forming 
cell pores

Effect/detection of high level 
of P2X7 receptor

Prostate cancer High No data No data
Positive correlation with a 
high grade of tumor aggres-
siveness and invasiveness

Bone tumors High
Wide variety of 
isoforms, mainly 
P2X7 B

Depends on the cell line 
(SaOs-2 cell line – detected, 
HOS cell line – not detec-
ted)

Detection in osteosarcoma, 
Ewing’s sarcoma and chon-
drosarcoma

Skin cancers High No data Detected (but not leading 
to cell death)

Increased synthesis in normal 
keratinocyte cells surround-
ing the tumor

Pancreatic cancer High P2X7 A
P2X7 B Detected

Positive correlation with a 
high grade of tumor invasi-
veness

Breast cancer Low/ high  
(depends on the data) No data

Depends on the cell line 
(HT-29 and Colo-205 – not 
detected, HCT8, Caco-2, 
MCA38 – detected

Positive correlation with a 
high grade of tumor migra-
tion and invasiveness

Gastrointestinal cancers High No data No data
Positive correlation with a 
high grade of tumor mali-
gnancy

Lung cancers High P2X7 B No data
Detection in non-small-cell 
lung carcinoma; highest 
expression in metastatic can-
cer cells

Blood cancers High P2X7 B Both detected

Detection in childhood leuke-
mias, acute myeloblastic leu-
kemia, acute lymphoblastic 
leukemia, chronic lymphocy-
tic leukemia

Cervical cancer High P2XJ trimers with 
P2X7 A Not detected Detection in cervical squamo-

us cell carcinoma

Ovarian cancer High in both groups No data Both detected Increased intensity of proli-
feration

Neuroblastoma High P2X7 B Not detected Negative correlation with the 
survival time of the patients

Glioblastoma Low P2X7 B Detected
Positive correlation with a 
high grade of tumor aggres-
siveness
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lines derived from pancreatic cancer (Giannuzzo et al., 
2015). Experiments using human pancreatic cancer cell 
lines have demonstrated the diversity of P2X7 receptor 
isoforms present in them. The tested lines could con-
tain the full isoform – P2X7 A – as well as the short-
ened isoform – P2X7 B. The P2X7 receptors activated 
by extracellular nucleotides exerted a proliferative effect 
on human pancreatic cancer cells. The key molecules 
involved in P2X7 receptor-induced proliferation and 
cancer growth were protein kinase C (PKC), phospho-
liase D (PLD), extracellular signal-regulated protein ki-
nases 1 and 2 (ERK1/2), and c-Jun N-terminal kinase 
(JNK). However, the suppression of inducible nitric ox-
ide synthase (iNOS) by P2X7 receptors indicated their 
anti-inflammatory role in pancreatic cancer and recovery 
(Choi et al., 2018). The involvement of the P2X7 recep-
tor in cancer development is also reported in another 
study. The receptor promotes the proliferation of pan-
creatic stellate cells (PSC) which are indirectly involved 
in the progression of pancreatic ductal adenocarcinoma 
(PDAC). The release of IL-6 cytokine from PSC in re-
sponse to the P2X7 receptor causes STAT3 activation 
in pancreatic cancer cells, indicating the importance of 
P2X7 in the interaction between PSC and cancer cell 
(Magni et al., 2021). Cells treated with extracellular ATP 
had a lowered mitotic index (MI) and increased uptake 
of propidium iodide, which indicates the opening of 
the cellular pore leading to cell death (Giannuzzo et al., 
2015). The same cells were however characterized by 
increased mobility and invasiveness. The same research 
group showed the effect of the P2X7 receptor on the 
invasiveness of these cells in vivo in an orthotopic pan-
creatic cancer model (Giannuzzo et al., 2016). The ad-
ministration of the P2X7 receptor inhibitor significantly 
reduced the tumor volume and the tumor-related fibrotic 
changes in the pancreas.

P2X7 in breast cancer

The role of the P2X7 receptor activity in breast can-
cer is much more complex and unclear than in the cases 
described above. Some researchers indicate a reduced 
P2X7 synthesis in invasive lobular adenocarcinoma and 
pancreatic ductal adenocarcinoma compared to normal 
tissues (Li et al., 2009). Moreover, studies with the use of 
micro-RNA molecules (miR-150) regulating the synthesis 
of P2X7 protein have shown that such a reduction in 
the level of the P2X7 receptor may enhance the develop-
ment of breast cancer. Cell lines incubated with miR-150 
molecules showed increased aggressiveness and invasive-
ness along with a decrease in P2X7 protein levels. The 
same results were obtained during in vivo experiments, 
where administration of miR-150 inhibitors increased 
P2X7 protein synthesis and thus decreased the aggres-
siveness of tumors in an orthotopic model of breast can-
cer (Huang et al., 2013). Similarly, in a different study, 
BzATP, a P2X7 receptor agonist, significantly increased 
cancer cell migration and invasion in MCF-7 breast can-
cer, which effect could be blocked by the P2X7 receptor 
antagonists (Sharma et al., 2021). There are however re-
sults, standing in contradiction with the aforementioned. 
A study by Tan in 2015, showed increased production 
of the P2X7 protein in cancer cells compared to nor-
mal cells. Moreover, experiments using small interfering 
RNA have shown that inhibition of receptor synthesis 
may negatively affect the proliferation of MCF-7 cells. In 
addition, the downregulation of P2X7 initiated apoptosis 
in this line. Such studies also showed a positive corre-
lation between the level of the P2X7 receptor and the 

level of the estrogen receptor (Tan et al., 2015). The ob-
served discrepancy in the studies on the P2X7 receptor 
level in normal and cancer tissues may be related to vari-
ants of this protein. The use of an antibody detecting the 
C-terminus of a protein will not detect truncated variants 
of the receptor. Studies with an antibody that detects the 
extracellular fragment showed an increased level of the 
P2X7 receptor compared to normal tissues (Slater et al., 
2004b). The above examples show how complex the re-
ceptor systems in cancer cells can be and how much the 
research should use methods detecting possible alterna-
tive variants of the assembly of transcripts encoding the 
P2X7 receptor.

The changed level of P2X7 receptor production does 
not have to be a result of cancer cells expression profile. 
It may also be associated with adverse environmental 
conditions in the tumor. The conditions of the lowered 
oxygen level increased the mRNA and protein of the 
P2X7 receptor synthesis (Tafani et al., 2010). Additional-
ly, breast cancer patient’s response to treatment was cor-
related with purinergic signaling of the P2X7 receptor. In 
contrast to chemoresistant people, non-chemoresistant 
patients showed a higher level of P2X7 receptor expres-
sion CD8+ T cells. Patients with chemoresistance exhib-
ited altered P2X7 receptor activity, which was demon-
strated by a constant number of CD8+ T cells activation 
marker and a decreased level of IFN-γ production in the 
presence of ATP (Ruiz-Rodríguez et al., 2020). What is 
more, the application of P2X7 ability to promote can-
cer cell death in high ATP conditions was described in 
Draganov study in which the anti-cancer properties of 
Ivermectin were mediated by differential ATP/P2X7-
dependent cytotoxicity (Draganov et al., 2021).

P2X7 in gastrointestinal cancers

In normal, healthy stomach tissue, the synthesis level 
of the P2X7 receptor remains at a low level. With the 
appearance of cancer changes, the level of this protein 
increases. Moreover, the level of P2X7 synthesis is cor-
related with the stage of tumor development. The more 
malignant the tumor is and a later stage of development 
progress, the greater the level of the P2X7 receptor. 
The above results suggest that the P2X7 receptor may 
be also a prognostic factor for the malignancy of gas-
tric cancer and the estimated survival time of the patient 
(Calik et al., 2020).

A more complicated expression pattern is found 
in colorectal cancer. Analysis of postoperative frag-
ments from 97 patients suffering from colorectal cancer 
showed a wide range of levels of P2X7 receptor syn-
thesis compared to normal tissues. Moreover, patients 
with high levels of P2X7 receptor lived significantly 
shorter compared to patients with low levels of P2X7 
receptor synthesis (Zhang et al., 2019). Several variants 
of the P2X7 receptor have been detected in colorectal 
cancer. There were functional variants that formed the 
cell pore as well as shorter variants that lacked this func-
tion (Barden, 2014). A similar pattern of P2X7 receptor 
expression occurs in cell lines. HT-29 and Colo-205 lines 
are characterized by the presence of shorter P2X7 recep-
tor isoforms devoid of the ability to cell pore forma-
tion (Barden et al., 2003), while the HCT8, Caco-2, and 
MCA38 lines are characterized by the presence of the 
complete form of the P2X7 receptor which forms the 
functional cell pore (Coutinho-Silva et al., 2005; Künzli et 
al., 2011; Bian et al., 2013).

In colon cancer, patients with omental and peritoneal 
carcinomatosis had greater levels of P2X7 receptor with 
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NLRP3 inflammasome in their adipocytes. The complex 
showed a correlation with the levels of circulating white 
blood cells (WBC) and the chemotactic factor MCP-1 
implicated in tissue infiltration of monocyte and mac-
rophages. These data indicate the involvement of the 
P2X7 receptor together with the NLRP3 inflammasome 
in modulating chemotaxis and spread of the metastasis 
in colon cancer (Solini et al., 2021).

P2X7 in lung cancer

Transcripts encoding the P2X7 receptor were found in 
26 patients suffering from non-small-cell lung carcinoma. 
Interestingly, in the same studies, no P2X7 transcripts 
were detected in patients with a chronic obstructive pul-
monary disease which may indicate an association of this 
receptor presence with the appearance of cancer in the 
lungs. Additionally, the highest expression of mRNA 
encoding P2X7 was found in metastatic cancer cells 
(Schmid et al., 2015). The P2X7 receptor is also present 
in the cancer cell lines of the non-small-cell lung carci-
noma, A549, PC-9, and H-292 (Takai et al., 2012, 2014) 
and is completely absent from normal bronchial epithelial 
cells, Beas-2B (Takai et al., 2014). In other studies, both 
tumor and immune cells of lung adenocarcinoma were 
shown to express the P2X7 receptor, but only immune 
cells did so with a functioning receptor. The tumors 
with a high expression of the P2X7B split variant were 
less infiltrated with B and T cells and more infiltrated 
with myeloid cells. P2RX7B differential expression pos-
itively influenced tumor development by controlling the 
regulation of the quality of immune cell infiltration (Ben-
zaquen et al., 2020). On the other hand, a small-molecule 
P2X7 receptor activator improves immune surveillance 
and stimulates anti-tumor immune responses by enabling 
the effector functions of adaptive immune T cells. These 
actions increase the effectiveness of αPD-1, an immune 
checkpoint inhibitor, in the treatment of non-small cell 
lung cancer (Douguet et al., 2021). In H-292 cells, the re-
duction of P2X7 receptor levels decreased actin cytoskel-
eton remodeling and migration evoked by transforming 
growth factor beta (TGF-β) (Takai et al., 2014).

P2X7 in blood cancers

P2X7 is also widely distributed in various types of 
leukemia but there is no uniform pattern in the func-
tion of this receptor. In mouse acute erythroleukemia 
cells (MEL), the P2X7 receptor may form a functional 
cell membrane pore which leads to cell death (Con-
stantinescu et al., 2010). P2X7 receptor levels are also 
higher in childhood leukemias (Chong et al., 2010) and 
it has also been detected in patients with acute my-
eloblastic leukemia and acute lymphoblastic leukemia 
(Zhang et al., 2004). Moreover, in the cells of patients 
with acute myeloblastic leukemia (AML), the increased 
level of the P2X7 receptor correlated with the shorter 
survival time of the patients. When it comes to acute 
myeloid leukemia, it was determined that P2X7A and 
P2X7B receptor isoforms were overexpressed, demon-
strating a favorable correlation between the progression 
of the disease and both receptor variations. In relaps-
ing patients, the level of P2X7A and P2X7B receptors 
was downmodulated and upmodulated, respectively, 
whereas in remitting AML patients both P2X7A and 
P2X7B receptors expression was decreased. Daunoru-
bicin (DNR), which is one of the primary chemothera-
peutic agents for AML, changed the level of P2X7A 
and P2X7B receptors in AML blasts to the same as 
in the relapsing patients. In the presence of high ATP 

levels caused by DNR administration, the P2X7A re-
ceptor produced by AML blasts promoted the opening 
of a large nonselective pore, which allowed the intra-
cellular absorption of anticancer drugs that caused cell 
death. In contrast, the increase in ATP promoted AML 
relapse by enabling the growth of P2X7B receptor-ex-
pressing blasts, which were unable to form the cytotox-
ic pore but were still able to activate the channel func-
tion of the receptor which protected cells from death 
caused by chemotherapy (Pegoraro et al., 2020). In a 
different study, AML development was effectively post-
poned both in vitro and in vivo by blocking ATP/P2X7 
signaling with the particular antagonist. The P2X7 re-
ceptor was enhancing leukemogenesis by promoting the 
self-renewal and homing abilities of leukemia-initiating 
cells (He et al., 2021). Additionally, the P2X7 receptor 
accelerated the progression of AML in patients with 
mixed lineage leukemia (MLL) gene correlated with 
poor prognostics. Through the activation of the leuke-
mia transcription factor Pbx3, the receptor promoted 
the proliferation of leukemia stem cells which resulted 
in the development of AML (Feng et al., 2021). The 
P2X7 receptor has also been detected in chronic lym-
phocytic leukemia cells in which the level of the P2X7 
receptor has correlated with the severity of the disease 
(Adinolfi et al., 2002). Other studies related to chronic 
lymphocytic leukemia have shown the presence of two 
variants of the P2X7 receptor in these cells. In addition 
to the complete cell pore-forming receptor, these cells 
have also produced a truncated form of the P2X7 re-
ceptor that did not form the cell pore (Gu et al., 2000).

P2X7 in cervical cancer

In cervical squamous cell carcinoma (CSCC), an im-
munodetection study of P2X7 receptor variants that 
did not form the cell pore showed higher levels of this 
protein compared to healthy tissues (Barden, 2014). 
The higher risk of HPV-16 positive CSCC development 
was associated with inherited dysfunction in the P2X7 
receptor caused by single nucleotide polymorphisms 
(Yang et al., 2016). Moreover, other studies showed a 
decreased level of the full-length variant of the P2X7 
receptor, where the level of reduction correlated with 
the degree of tumor development (Li et al., 2007). Simi-
larly, in the two separate human cervical cancer cell 
lines, the P2X7 receptor would become engaged in the 
anticancer activity of atractylenolide-I (Han et al., 2022). 
There are also reports indicating the coexistence of dif-
ferent P2X7 receptor isoforms in cervical cancer cells, 
where an alternative P2XJ receptor splicing variant may 
form non-functional trimers with the P2X7A variant 
(Feng et al., 2006).

P2X7 in ovarian cancer

The immunodetection of the P2X7 receptor pro-
tein showed a high level of this receptor in both: pa-
tients with ovarian cancer and in healthy tissue donors. 
The level of the receptor in healthy and pathological 
tissues did not differ significantly. Interestingly, in the 
same studies, cell lines from patients with SKOV-3 and 
CAOV-3 ovarian cancer showed an increased level of 
the P2X7 receptor and an increased intensity of prolif-
eration after stimulation by ATP and BzATP (Vázquez-
Cuevas et al., 2014). Other studies have shown that in 
the biopsy material from patients with ovarian cancer, 
the P2X7 receptor variant that forms the cell pore and 
shorter pore non-forming variants occur simultaneously 
(Gilbert et al., 2019).
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P2X7 in neuroblastoma

Studies using samples from patients suffering from 
neuroblastoma showed a high level of P2X7 protein syn-
thesis regardless of the stage of the disease. Neuroblas-
toma commercial cell lines are also characterized by the 
presence of the P2X7 protein (Raffaghello et al., 2006). 
Moreover, the stimulation of neuroblastoma cells by ex-
tracellular ATP did not cause cell death but the intensi-
fication of cell divisions and increased secretion of sub-
stance P. This may suggest that there is a shorter variant 
of the P2X7 receptor in neuroblastoma cells, which does 
not cause cell death by pore formation in the membrane 
(Raffaghello et al., 2006). Other studies have shown ro-
bust expression of mRNA encoding the P2X7 receptor 
in samples from 131 patients suffering from neuroblas-
toma (Amoroso et al., 2015). It has also been shown 
that there is a negative correlation between the high ex-
pression of the P2X7 gene and the survival time of the 
patients. Studies using ACN cells showed that lowering 
the P2X7 receptor level with small interfering mRNA 
decreased AKT kinase phosphorylation (in vivo and in 
vitro) and the level of vascularization of cancer tumors 
in vivo (Amoroso et al., 2015). Moreover, it was indicated 
that the cooperation between kinin and purinergic signal-
ing networks is crucial for neuroblastoma to spread and 
metastasize to the bone marrow. The treatment with 
bradykinin, a pro-metastatic factor, increased the expres-
sion levels of the P2X7B isoform in comparison to the 
P2X7A receptor. As a result, the compound increased 
tumor proliferation, which P2X7 receptor antagonists 
greatly reduced. However, bradykinin did not increase 
cell death or P2X7A receptor-related pore activity, fa-
voring the development of neuroblastoma (Ulrich et al., 
2018). Additionally, alternative forms of non-functional 
P2X7 receptor (nfP2X7) were detected in neuroblas-
toma. The study indicated that the nfP2X7 receptors 
were necessary for the survival of the tumor cells. The 
expression of those receptors was stimulated by high 
ATP concentrations, which characterize the tumor mi-
croenvironment. High concentrations of ATP promoted 
a transition from P2X7 to nfP2X7. This switch allowed 
tumor cells to take advantage of nfP2X7 ability to pro-
mote cell survival and proliferation without suffering the 
consequences of large pore-mediated cell death, like in 
the case of P2X7 receptors (Gilbert et al., 2019).

P2X7 in glioblastoma

Glioblastomas are the most common and malignant 
primary brain tumors in adults. These tumors are also 
characterized by the highest degree of malignancy, fre-
quent relapses, rapid growth, and destruction of tissues 
adjacent to the tumor. The life expectancy of a person 
diagnosed with glioblastoma ranges from several months 
to two years after diagnosis (Kleihues et al., 2002; Wen & 
Kesari, 2008). The high mortality is not only due to the 
malignancy of the tumor but also to difficult diagnos-
tics and treatment. As tumors develop behind the blood-
brain barrier, chemotherapy is limited to a few orally ad-
ministered chemotherapeutic agents such as Temozolo-
mide (Bush et al., 2017), able to cross this barrier. Radia-
tion therapy is not always efficient either. This is due to 
the different resistance to ionizing radiation in patients 
and the highly hypoxic nature of glioblastoma which 
hinders the effects of radiotherapy (Amberger-Murphy, 
2009). The most commonly used treatment strategy that 
ensures the longest disease-free time and improves the 
patient’s life is the surgical removal of the tumor along 
with the surrounding tissues (Li et al., 2016b). However, 

due to the cancer cells’ tendency to infiltrate surrounding 
tissue, it is almost impossible to remove the tumor com-
pletely and the residual tumor remnants are left behind 
to cause the disease to relapse soon.

The P2X7 receptor is, along with other nucleotide re-
ceptors, widely distributed in all cells that make up the 
brain tissue (Collo et al., 1997; Duan & Neary, 2006; 
Yu et al., 2008; Jimenez-Mateos et al., 2019). Not sur-
prisingly, this receptor is also observed in many patho-
logical conditions in the brain, including glioblastoma. 
The P2X7 receptor is present in almost all cell models 
of glioblastoma but its role in the development of this 
disease is unclear. Analysis of the protein level and ex-
pression of the gene encoding P2X7 showed a decreased 
level of the P2X7 receptor in glioma as compared to the 
healthy brain. The authors of the study explained this 
phenomenon by the strong methylation of the gene en-
coding P2X7 (Liu et al., 2017).

In studies using the murine glioblastoma line GL261, 
this receptor increases susceptibility to cell death and re-
duces resistance to radiotherapy. Decreasing the P2X7 
receptor level using small interfering RNA did not re-
duce tumor size in the in vivo model. However, tumors 
with decreased levels of this receptor were significant-
ly less responsive to radiation therapy (Gehring et al., 
2015). Tamajusuku showed similar results indicating the 
positive role of the P2X7 receptor in stimulating cell 
death in vitro. Mouse GL261 glioma cells, stimulated by 
extracellular ATP, died as a result of necrosis (Tamaju-
suku et al., 2010). Moreover, in this cell line, the P2X7 
receptor is probably functional and its activation results 
in a calcium signal and a cell pore formation, leading to 
cell death. Studies by Strong’s group showed an increase 
in calcium signal when stimulated by extracellular ATP. 
The stimulation of the receptor in a medium with a re-
duced content of calcium ions significantly reduced the 
number of responding cells. Moreover, the addition of 
the P2X7 receptor permanent inhibitor – oxATP – also 
decreased the number of responding cells (Strong et al., 
2018). In conclusion, in the murine model of GL261 gli-
oma, the P2X7 receptor functions as a receptor regulat-
ing cell death, and its stimulation by extracellular ATP 
may enhance the anti-tumor effect in therapy.

Studies of the function of the P2X7 receptor that 
occurs in rats’ glioblastoma are much more confusing. 
Studies using extracellularly administered apyrase, an en-
zyme that hydrolyzes ATP, showed that applying it to 
the area of the implanted C6 glioma tumor reduced its 
volume. Moreover, the effects of tumor inhibition were 
similar to those obtained in the group of animals treated 
with temozolomide (Morrone et al., 2006). However, the 
functionality of the P2X7 receptor in C6 glioma cells in 
vitro remains unclear. Some researchers believe that the 
calcium signal appearing after the administration of ATP 
or BzATP comes from the stimulation of the P2X7 re-
ceptor, and that stimulation of this receptor increases the 
aggressiveness of C6 glioma cells and the expression of 
this receptor itself (Wei et al., 2008). Also, other studies 
showed the appearance of a calcium signal after stimu-
lation by BzATP and increased intensity of proliferation 
with no signs of cell death (Matyśniak et al., 2020). On 
the other hand, studies on the calcium signal in C6 glio-
ma also showed the possibility of P2Y2 receptor stimu-
lation by BzATP and the lack of cellular pore formation 
after P2X7 receptor stimulation (Supłat-Wypych et al., 
2010). Other research groups indicate the TRPM7 ion 
channel (transient receptor potential cation channel, sub-
family M, member 7) as a source of calcium signal after 
BzATP administration in C6 glioma cells (Nörenberg et 
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al., 2016). It should be noted, however, that so far, no 
studies using small interfering RNA or other genetic en-
gineering methods have been performed that could help 
test P2X7 activity in these cells in vitro.

In vivo studies with rat C6 glioblastoma show a clear 
and significant role of the P2X7 receptor in regulating 
tumor aggressiveness. Administration of an inhibitor of 
this receptor (BBG) to rats with C6 glioma led to a sig-
nificant reduction in the size of tumors and the amount 
of infiltrating microglia in the tumor mass (Ryu et al., 
2011). Moreover, the influence of the P2X7 receptor 
on the secretion of macrophage inflammatory protein 
(MIP-1α), which may promote microglia recruitment and 
support the aggressiveness of C6 glioma has also been 
demonstrated (Fang et al., 2011). However, there is also 
a report in the literature that the P2X7 receptor has an 
inhibitory effect on the development of C6 glioma. Stud-
ies by Fang et al. have shown that inhibition of the P2X7 
receptor increases tumor size and increases expression of 
the P2Y2 receptor, hypoxia-inducible factor 1 (HIF-1α), 
and vascular endothelial growth factor (VEGF) (Fang et 
al., 2013).

The expression pattern and functional properties 
of the P2X7 receptor in human glioma cells are simi-
larly complex. The P2X7 receptor is present in almost 
all studied lines of human glioblastoma (Ji et al., 2018; 
Bergamin et al., 2019; Matyśniak et al., 2020) and patient 
tissues (Ziberi et al., 2019). However, the functionality of 
this receptor differs depending on the cell line. All afore-
mentioned research groups working on this issue clearly 
indicate the lack of P2X7-induced cell death in human 
glioblastoma cultures. However, this is where the con-
sistency of the results ends. Ji et al. showed that stimu-
lation of the P2X7 receptor by the agonist BzATP posi-
tively influenced the proliferation of human glioma cells. 
However, studies of other groups do not confirm these 
reports (Bergamin et al., 2019; Matyśniak et al., 2020). In-
hibition of P2X7 receptor activity influenced tumor size 
in the in vivo model of human U-138 glioma (Bergamin 
et al., 2019). Also, in the human U-251 glioma model, 
blocking P2X7 receptor activity inhibited cell prolifera-
tion and the secretion of granulocyte-macrophage colo-
ny-stimulating factor (GM-CSF). Moreover, inhibition of 
cell growth following administration of a P2X7 inhibitor 
had the same effect in inhibiting proliferation as treat-
ment of cells with temozolomide (Kan et al., 2020; Drill 
et al., 2020).

Extracellular ATP may also influence the development 
of spheroids in vitro as well as the share of glioblastoma 
stem cells in all tumor cells population. ATP adminis-
tered to the culture medium decreased the level of stem 
cell markers and decreased the size of the spheroids of 
the human glioma lineage (Ledur et al., 2012). However, 
studies using glioblastoma stem cells isolated from pa-
tients have shown the stimulating role of the P2X7 re-
ceptor on the development of stem cells and the pres-
ence of epithelial-mesenchymal transition (EMT) mark-
ers which contribute to increased cell migration (Ziberi 
et al., 2019).

There are also reports of an inhibitory effect of glio-
blastoma P2X7 receptor on radiation-sensitive human 
M059J glioblastoma. Cell irradiation increased P2X7 re-
ceptor synthesis in these cells and increased the num-
ber of cells entering the cell death pathway (Gehring et 
al., 2012). Similarly, after cell irradiation, a shift in the 
P2X7 isoform expression was detected – the P2X7A and 
P2X7B isoforms were down- and upregulated, respec-
tively. These emerged clones resistant to the radiation 
were responsible for tumor recurrence. The combination 

of radiotherapy with P2X7R-targeting drugs was a more 
effective treatment than radiation alone – treatment with 
P2X7 receptors antagonists during the recovery phase in-
creased irradiation-dependent cytotoxicity and cell death 
in GB40 and GB48 cells (Zanoni et al., 2022).

Summarizing, a heterogeneous picture emerges from 
the research on the role of the P2X7 receptor. This re-
ceptor appears to be involved in many cellular functions 
but to fully understand its role in glioblastoma, more in-
depth research is needed to reveal molecular interactions 
and mechanisms.
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