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Morphological development is the most common non-
invasive criterion used to select in vitro human embry-
os for implantation. With this criterion, however, em-
bryos in cellular arrest go unnoticed. A more accurate 
criterion is needed to improve the success rate of im-
plantation. Extracellular matrix metalloproteases type 
2 (MMP-2) and MMP-9 are key markers of embryonic 
development and the implantation process, according 
to various animal studies. The first objective of this 
study was to examine proMMP-2 and proMMP-9 activ-
ity in the culture media of human embryos with good 
morphological development. Secondly, the results of 
proMMP-2 and proMMP-9 activity in the culture medi-
um were compared between pregnant and non-preg-
nant. Forty-two patients were approved by the Ethics 
and Research Committees of the Instituto Nacional de 
Perinatología in México City hospital, based on insti-
tutional inclusion criteria for in vitro fertilization. On 
day 5 of development, embryos were transferred to 
patients, and the culture media secretion profile of 
proMMP-2 and proMMP-9 activity was determined by 
substrate gel zymography. After analysis of embryo 
sac development, each patient was assigned to the 
pregnant (n=17) or non-pregnant (n=25) group. Our 
results demonstrate that proMMP-2 was active in the 
culture media corresponding to all 17 women achiev-
ing full-term pregnancy and proMMP-9 in the me-
dia corresponding to 11 of these women. Contrarily 
proMMP-2 and proMMP-9 were active in the culture 
media corresponding to 3 and 11 of the 25 non-preg-
nant patients, respectively. The clinical implications of 
this study suggest the activity evaluation of proMMP-2 
and proMMP-9 in embryonic culture media on day 5 of 
development appears to be a reliable indicator of the 
quality of embryos and their capacity to establish a 
pregnancy.
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INTRODUCTION

Regarding the evaluation of embryo quality prior to 
implantation, there is as yet no quantitative method. Em-
bryonic morphology is the criterion employed in clinical 
practice as a qualitative marker of the viability of em-
bryos to be transferred to patients (Capalbo et al., 2014; 
Minasi et al., 2016).

The successful growth and implantation of blastocysts 
is a complex event involving maternal and embryonic 
signals (Fritz et al., 2014; Matsumoto et al., 2016). Re-
lated to such, cytokines (Krussel et al., 1998; Prutsch et 
al., 2012), growth factors (Paria et al., 1999; Zeng et al., 
2016), and matrix metalloproteinases (MMPs) (Sternlicht 
& Werb, 2001; Nissinen & Kahari, 2014) are associated 
with an adequate interaction between the blastocyst and 
uterine endometrium after implantation (Tazuke & Giu-
dice, 1996; Massimiani et al., 2019). Taskin et al. (2012) 
detected the secretion of interleukin (IL)-1β in the cul-
ture media of human embryos at distinct stages of devel-
opment (Taskin et al., 2012).

Among the signaling pathways regulated by inflam-
matory cytokines is that which activates MMPs (Chen 
et al., 2013), a family of zinc-dependent endoproteases. 
MMPs participate in tissue remodeling and the degra-
dation of various proteins in the extracellular matrix, 
including collagen (Shekhter et al., 2019; Shin et al., 
2019), elastin (Yadav et al., 2011; Van Doren, 2015), 
gelatin (Le et al., 2007; Zitka et al., 2010), matrix gly-
coproteins and proteoglycans (Pietraszek-Gremplewicz 
et al., 2019; Theocharis et al., 2019). The substrates de-
graded by MMPs determine the basis of classification 
of the latter. Commonly known MMPs are stromely-
sin-1 (MMP-3), -2 (MMP-10), and -3 (MMP-11), col-
lagenase-1 (MMP-1), -2 (MMP-8), and -3 (MMP-13), 
gelatin-A (MMP-2) and B (MMP-9), matrilysin type 
I (MMP-7) and II (MMP-26) and membranal type I 
(MMP-14, -15, -16, and -24) and II (MMP-23) (Visse 
& Nagase, 2003; Brew & Nagase, 2010; Laronha & 
Caldeira, 2020). In addition to their role in pregnan-
cy (Cohen & Bischof, 2007; Stojanovic et al., 2010), 
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MMPs promote cell proliferation (Zhang et al., 2016; 
Quintero-Fabian et al., 2019), migration (Bischof et 
al., 2002; Pollheimer et al., 2014), and differentiation 
(Chan et al., 2020; Gorter & Baron, 2020).

The first aim of the present study was to analyze the 
activity of proMMP-2 and proMMP-9 in the culture me-
dia of embryos with good morphology at day 5 of de-
velopment. Secondly, the media were divided into two 
groups, corresponding to successfully and unsuccessfully 
implanted embryos, and compared to explore possible 
significant differences in the activity of proMMP-2 and 
proMMP-9.

MATERIALS AND METHODS

Ethics approval

The current protocol was reviewed and approved 
by the Ethics and Research Committees of the Insti-
tuto Nacional de Perinatología in México City (212250-
22661). The purpose of the study was explained to all 
patients, and informed consent was signed by those who 
decided to participate.

Study design and patients

From May 2019 to May 2020, a cross-sectional study 
was carried out in the Department of Reproductive Bi-
ology of the Instituto Nacional de Perinatología in the 
Ciudad de México, México. A total of 42 patients diag-
nosed with infertility were admitted to the in vitro ferti-
lization. None of the patients previously received thera-
peutic treatments.

Clinical definition and inclusion criteria

The following constituted the inclusion criteria: all 
participants were aged <37 years, had a regular men-
strual cycle, a normal uterine cavity confirmed by 
hysteroscopy, absence of intrauterine adhesion or in-
flammation, an endometrial thickness in the late fol-
licular phase ≥7 mm (measured by ultrasonography), 
a normal ovarian reserve (follicle-stimulating hormone 
<9.0mU/mL), a normal ovarian response to the stim-
ulation protocols (>8 oocytes retrieved in a controlled 
ovary hyperstimulation cycle), and no hormone (estra-
diol/progesterone) treatment – during the endometrial 
cycle. The exclusion criterion: was the failure of the 
woman to undergo an ultrasound scan within 4 weeks 
after a positive pregnancy test. Non-inclusion criteria: 
were endometrial cancer or hyperplasia, endometrio-
sis, and having a male partner with infertility.

Patients and hormonal stimulation

The patients received controlled ovarian stimulation 
with a conventional dose of 150-225 IU recombinant 
FSH (Gonadal-F; Merck Serono, Germany) according 
to the body weight of each patient (NyboeAndersen 
et al., 2008). When the follicular diameter reached 18 
mm, oocyte maturation was stimulated with 10,000 IU 
hCG (Ovitrelle; Merck), and follicular oocytes were 
obtained 36 h later with ultrasound guidance.

In vitro fertilization and developing embryos

Oocytes were fertilized in vitro by exposing them 
to 1×106 capacitated spermatozoa/mL for 18 h. This 
process was carried out in HTF-HEPES medium (Ir-
vine Scientific, Santa Ana, CA, USA) supplemented 

with 5% BSA (Sigma Carlsbad, CA, USA) under con-
trolled conditions (37°C with a 5% CO2 and 95% air). 
Fertilization was confirmed by the presence of a sec-
ond polar corpuscle body (Vanderzwalmen et al., 1997; 
Ziebe et al., 1997). Each one of the fertilized oocytes 
was incubated in 50 µL of G-1 PLUS culture medium 
(Vitrolife, Göteborg, Sweden) until day 3 of embry-
onic development, and later the embryos were trans-
ferred to 50 µL of G-2 PLUS culture medium (Vit-
rolife). On day 5 blastocysts were evaluated according 
to the scoring system (type I, II, or III quality) (Cut-
ting et al., 2008) and transferred to women. The devel-
opment embryos were cultured in an ASTEC incuba-
tor (EC6S-MD, PA, USA) at 37°C with a 5% O2 and 
6% CO2 until being transferred to women on day 5.

Morphological development was monitored daily un-
til day 5 at which time the culture media were retained 
for examination of MMPs, and two embryos were trans-
ferred to the uterine cavity of each patient whit the Soft 
Cook technique by using a Flexible Pass intrauterine 
transfer cannula. The process was assisted by abdomi-
nal ultrasound guidance and a real-time, 5-MHz sector 
electronic array endovaginal test (Philips Epiq CVx; MO, 
USA).

Blood samples and quantification of sex hormone level

Peripheral blood samples (5 mL) were obtained from 
the patients by puncturing the cephalic vein on day 
14 after the embryo transfer. Samples were placed in 
EDTA-K2 tubes (BD Vacutainer) and centrifuged at 
14,000 rpm for 10 min. Serum was collected in Ep-
pendorf tubes and stored at –70°C to await the hor-
mone quantification assay, which was performed in the 
central laboratory of the Instituto Nacional de Perina-
tología on a cobas e411 modular analytical apparatus 
(Roche, USA). The serum levels of progesterone (P4), 
estradiol (E2), testosterone (T4), follicle-stimulating 
hormone (FSH), luteinizing hormone (LH), Anti-Mülle-
rian hormone (AMH), and human chorionic gonadotro-
pin (hCG) were measured with a commercial assay kit 
(Roche system, USA), according to the manufacturer´s 
recommendations and as previously described (Acuña-
González et al., 2021). The lower limit of detection for 
these hormones was 0.4 ng/mL, 5.0 pg/mL, 0.025 pg/
mL, 0.100mIU/mL, 0.100 mIU/mL, 0.2 ng/mL, and 
0.1 mIU/mL, respectively. The intra-assay coefficient 
of variation was 3%, 5%, 5%, 3%, 2%, 3%, and 5% 
respectively.

In the case of an apparently successful implantation 
of the embryo and good endometrial receptivity, em-
bryo sac development was examined with an ultrasound 
probe. The results of this probe led to the final iden-
tification of pregnant (n=17) and non-pregnant patients 
(n=25)

Protein quantification and matrix metalloproteinase 
activity

The total concentration of proteins in the culture 
media of the embryo on the fifth day was determined 
by the colorimetric Bradford method (Bradford, 
1976). The activity of the two MMPs was examined 
by using SDS-polyacrylamide gels with porcine gelatin 
(1 mg/mL), as described previously (Flores-Herrera et 
al., 2012). A culture medium from U937 promyelocyte 
cells (ATCC, Manassas, VA, USA) served as the inter-
nal control of electrophoretic mobility. Each sample 
was loaded with 0.75 µg of protein and the activity 
band was captured with the EpiChemi Darkroom gel 
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documentation system (UVP, CA, USA). Optical den-
sitometry was measured on the NIH ImageJ program.

Statistical analysis

The difference between the proMMP-2 and 
proMMP-9 optical density values detected in the cul-
ture media of the two groups of embryos (pregnant 
patients vs. non-pregnant patients) was examined with 
the Student´s t-test. All values are expressed as the 
mean ± standard deviation (S.D.), and statistical sig-
nificance was considered at p≤0.05. Statistical analy-
sis was performed on GraphPad Prism version 8.0 
(GraphPad Software, San Diego, CA, USA). STATA 
software was used to plot the receiver operating char-
acteristic (ROC) curves and calculate the area under 
the curve (AUC-ROC) (StataCorp LLC; v16, TX, 
USA). The cutoff value selected (based on the ROC 
curve) was that at which the sensitivity and specificity 
were best and the distance to the top-left corner of 
the ROC curve was the least. Sensitivity, specificity, 
and positive and negative predictive values   were deter-
mined on STATA software.

RESULTS

Patient characteristics

The initial characteristics prior to hormonal stimula-
tion of the 42 patients (pregnant, n=17 and non-preg-
nant, n=25) are compared in Table 1. No significant 
differences existed regarding to age (p=0.23), body mass 
index (p=0.43), years of infertility (p=0.39) and the 
concentration of hCG (p=0.70), E2 (p=0.71), and P4 
(p=0.90) were determined, and we did not find statisti-
cally significant differences between both groups (Ta-
ble 1).

Hormone profiling

Fourteen days after the embryos were transferred, the 
concentration of hormones was compared between the 
pregnant and non-pregnant patients (Table 2). No sig-
nificant differences existed with respect to P4 on the 
day of final oocyte maturation (p=0.664), E2 in the non-
follicular phase (p=0.684) or follicular phase (p=0.326), 
T4 (p=0.336), LH (p=0.095), or AMH (p=0.263). How-

Table 1. Clinical data on the patients participating in the study.

Characteristics Pregnant
(n=17)

Non-pregnant
(n=25) p-value

Age (years) 35.7±2.4 36.8±3.1 0.23

BMI (Kg/mL) 27.2±3.7 26.3±3.2 0.43

Years of infertility 4.8±3.0 5.4±3.2 0.39

Number of embryos transferred

1, n (%)  0 (0.0)  5 (20.0)
0.0852, n (%) 17 (100) 20 (80.0)

Quality of the transferred embryos

I, n (%) 7 (22.0) 5 (11.1) 0.137

II, n (%) 25 (71.0) 26 (57.8) 0.04

III, n (%) 2 (7.0) 14 (31.1) 0.001

Serum hormone concentration

hCG (mIU/mL) 2088.2±2300.4 1254.0±1149.2 0.70

E2 (pg/mL) 1496.7±793.9 1674±513.3 0.71

P4 (ng/mL) 0.65±0.4 0.55±0.3 0.90

BMI, body mass index; hCG, human chorionic gonadotropin; E2, estradiol; P4, progesterone. The criterion for assigning patients to the groups was 
embryo sac development (or lack thereof). Data are reported as the mean ± standard deviation.

Table 2. Comparison of the hormonal concentration between women with implanted versus non-implanted embryos.

Variable Pregnancy
(n=17)

Non-pregnancy
(n=25) p-value

P4 on day of final oocyte maturation (ng/mL) 0.49±0.20 0.45±0.28 0.664

E2, non-follicular phase (pg/mL) 60.7±16.4 63.7±2710 0.684

E2, follicular phase (pg/mL) 1368.0±582.1 1889.0±849.3 0.326

T4, follicular phase (pg/mL) 50.4±20.5 46.2±7.8 0.336

FSH, follicular phase (mIU/mL) 4.6±1.3 6.3±2.5 0.011

LH, follicular phase (mIU/mL) 4.9±1.2 5.8±1.6 0.095

AMH (ng/mL) 1.56±0.61 1.39± 0.37 0.263

hCG (mIU/mL) 61.8±32.7 2.7±1.4 <0.0001

P4, progesterone; E2, estradiol; T4, testosterone; FSH, follicle-stimulating hormone; LH, luteinizing hormone; AMH, Anti-Müllerian hormone; hCG, 
human chorionic gonadotropin. Data are expressed as the mean ± standard deviation.
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ever, significant differences were indeed found for FSH 
(p=0.011) and hCG (p<0.0001; Table 2).

Activity of proMMP-2 and proMMP-9 in the culture 
media of the embryos

On day 5 of development, the embryos were trans-
ferred to the patients and the secretion profile of 
proMMP-2 and proMMP-9 was later determined in the 
culture media (Fig. 1). The presence of proMMP-2 was 
detected in the culture media corresponding to 82% 
of the pregnant patients (14 of 17; lane 1 to 17) and 
in 12% of the non-pregnant patients (3 of 25; lane 18 
to 42; Fig. 1A). The latter group included three wom-
en who became pregnant and underwent a spontaneous 
abortion (P29, P30, and P38; Fig. 1A). The optical den-
sity of proMMP-2 was quantified for each of the activ-
ity bands (Fig. 1B), showing a significant 1.4-fold lower 
value in the three non-pregnant patients with proMMP-2 
activity than in the pregnant women (p=0.045; Fig. 1B).

On the other hand, proMMP-9 activity was found in 
the culture media corresponding to 11 of 17 (64.7%) 
pregnant and 11 of 25 (44%) non-pregnant patients. 
The optical density of the bands of proMMP-9 dis-
played a significant 1.2-fold lower value in the culture 
media corresponding to the 11 non-pregnant patients 
with proMMP-9 activity versus the media correspond-
ing to the 11 pregnant women with proMMP-9 activity 
(p=0.002; Fig. 1C).

Predictive values   of proMMP-2 and proMMP-9 in the 
culture media corresponding to embryos producing 
pregnancy

The ROC curve was used to evaluate whether the 
sensitivity and specificity of proMMP-2 and proMMP-9 
are adequate for determining the capacity of transferred 
embryos to produce pregnancy (Fig. 2). For proMMP-2, 
the optical density of 423 was taken as the cutoff val-
ue, resulting in statistical significance (p=0.0262) with 
a sensitivity of 100% and a specificity of 100%. For 
proMMP-9, the optical density of 550 was adopted as the 
cutoff value, rendering statistical significance (p=0.0035) 
with a sensitivity of 81.8% and a specificity of 72.7%.

DISCUSSION

MMPs play an important role in the remodeling of 
different structural and support components during ovu-
lation (Smith et al., 2002; Rosewell et al., 2015), decidu-
alization (Jones et al., 2006; Sharma et al., 2016), and im-
plantation (Wang et al., 2003; Shokry et al., 2009; Clark 
et al., 2013). The main findings of the current study in 
relation to the activity of proMMP-2 and proMMP-9 in 
the culture media at day 5 of embryonic development 
can be summarized in five points. Firstly, the activity 
of proMMP-2 was detected in 14 of 17 culture media 
corresponding to the patients who achieved a full-term 
pregnancy and in 3 of 25 culture media associated with 
women without this outcome. It was 1.4-fold greater in 
the former group. Secondly, the activity of proMMP-9 
was observed in 11 of 17 culture media corresponding 
to the patients who carried their pregnancy to term and 
in 11 of 25 culture media associated with women with-
out this outcome. It was 1.2-fold greater in the former 
group (Fig. 1). Thirdly, in the three patients who did not 
carry their pregnancy to term, only proMMP-9 activity 
was found. Fourthly, the activity of both proMMP-2 and 
proMMP-9 was identified in three non-pregnant patients 

who had some pre-pregnancy complications (Fig. 1). Fi-
nally, there were no significant differences in the con-
centration of the hormones hCG, E2, or P4 between 
pregnant and non-pregnant patients (Table 1).

Gu and others (Gu et al., 2015) reported the concen-
tration of the active form of MMP-9 at 0.698±0.022 ng/
mL in the culture media of developing human embryos, 
which resulted in pregnancy for 77.0% of the participat-
ing patients (Woessner, 1991; Huang et al., 1998; Gu et 
al., 2015). According to the present study, the activity of 
proMMP-2 and proMMP-9 (Fig. 1B, C) was significantly 
more robust in the culture media of the embryos yield-

Figure 1. Activity of proMMP-2 and proMMP-9 in the culture 
media of human embryos on day 5 of development. 
(A) The culture media from both implanted embryos (pregnant 
patients; lanes 1–17) and non-implanted embryos (non-pregnant 
patients; lanes 18–42) were analyzed using gel. The activity of 
proMMP-2 (62 KDa) and proMMP-9 (92 KDa) was identified with 
respect to the electrophoretic mobility of the culture medium of 
the promyelocyte cell line (ATCC, U937), as previously reported 
by our research group (Flores-Herrera et al., 2012). Optical densi-
ty (OD) of proMMP-2 (B) and proMMP-9 (C) in the culture media 
(CM). The points indicate the values of the activity band corre-
sponding to the transferred embryos leading to pregnancy (n=14) 
and non-pregnancy (n=28). Optical density (O.D) was determined 
using the NIH ImageJ program (USA).

Figure 2. Predictive values of the ROC curves. 
Based on the cutoff value that showed the best sensitivity and 
specificity for proMMP-2 and proMMP-9 as biomarkers of the suc-
cess of implantation. We confirm that proMMP-2 and proMMP-9 
are significantly elevated in pregnancy (n=14) and non-pregnancy 
(n=28), with an AUC=1 (p=0.0262) and AUC=0.867 (p=0.0035) re-
spectively.
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ing a full-term pregnancy than those that did not (Ta-
ble 1). The culture media of embryos that generated a 
full-term pregnancy had a 1.4-fold greater proMMP-2 ac-
tivity (p=0.045) than the media of the other cases (3/25) 
showing proMMP-2 activity. Similarly, the culture media 
displayed a 1.2-fold greater proMMP-9 activity (p=0.002) 
for the embryos engendering a full-term pregnancy 
(11/17) compared to the other cases (11/25) exhibiting 
proMMP-9 activity.

A conceptual model is herein provided (Fig. 3) to 
explain how MMPs are activated by epidermal growth 
factors (Gu et al., 2015), interleukin (IL)-1β, and tumor 
necrosis factor (TNF)-α (Basu et al., 2018; Librach et al., 
1991). Sequeira and others (Sequeira et al., 2015) report-
ed a significant 15.4-fold greater concentration of IL-1β 
in the culture media corresponding to developing human 
embryos successfully versus unsuccessfully implanted in 
patients (8.5±1.4 vs 0.55±0.25 pg/mL). Implantation was 
successful in 42.0% of the participants (Sequeira et al., 
2015).

One study found that syncytiotrophoblast cells secrete 
a 2.4- and 3.8-fold greater amount of IL-1β in the first 
and second trimesters of pregnancy, respectively, com-
pared to the pre-pregnancy level. The secretion of IL-
1β is associated with an increase in MMP-9 activity and 
invasion (Librach et al., 1994). After interacting with its 
receptor, IL-1β regulates the signaling pathway involved 
in the activation of the mitogen-activated protein kinase 
(MAPK), p38 MAPK, c-Jun N-terminal kinase (JNK), 
and the extracellular regulatory kinase (ERK) ( Vincenti 
& Brinckerhoff, 2002; Sondergaard et al., 2010). As a 
consequence, IL-1β promotes the activation of nuclear 
factor kappa-beta (NFkβ) and the expression of MMP-
13 (Liacini et al., 2003).

The collagenolytic activity of MMPs is regulated by 
the specific tissue inhibitors of these proteinases (Woess-
ner, 1991; Zhu et al., 2012). Cytotrophoblast cells, treat-

ed with 50 nM of their tissue inhibitor, known as tis-
sue inhibitor of metalloproteinase-2 (TIMP-2), exhibit 
a reduction (up to 40%) in invasiveness (Librach et al., 
1991; Bischof & Campana, 2000). The current results 
show a 1.4-fold and 1.2-fold decrease in proMMP-2 and 
proMMP-9 activity, respectively (Fig. 1B, C), in the cul-
ture media corresponding to the patients who were preg-
nant but did not carry to term. However, the expression 
of TIMPs was not presently evaluated in the culture 
media of developing embryos. It would be interesting to 
determine whether the MMP/TIMP relationship is in-
volved in the mechanism responsible for regulating the 
progress of implantation and pregnancy.

Recently, polymorphisms localized in the promoter 
region of MMP-2 (–1306 C/T; rs 243865) and MMP-9 
(–1562 C/T; rs 3918242) were found to induce changes 
in the levels of transcription and or expression of the 
respective protein. These mutations have been proposed 
as a risk factor for spontaneous abortion (Barisic et al., 
2018; Basu et al., 2018). Regarding the three patients 
of the present investigation that spontaneously aborted 
(P29, P30, and P38), the corresponding culture media 
displayed proMMP-2 and proMMP-9 activity (Fig. 1B, C). 
Future research should explore the possible relation of 
such pregnancy complications to mutations.

MMP-2 has the capability of degrading fibronectin, 
elastin, and collagen type IV, V, and VII. In contrast, 
MMP-9 degrades proteoglycans, elastin, and collagen I, 
IV, V, and XI (Kisalus et al., 1987; Librach et al., 1991; 
Mylona et al., 1995; Iwahashi et al., 1996), thus allowing 
the cytotrophoblast cells to invade the endometrium and 
prepare the way for implantation (Sharma et al., 2003) 
(Fig. 3). During the implantation window, according to 
in vivo models (Liu et al., 2006) and in vitro studies (Zhang 
et al., 2013), the epithelial cadherin-like binding protein 
(E-cadherin) enables the embryo to adhere to the endo-
metrial epithelium, which is degraded by MMP-9 (Maia-
Filho et al., 2015). Hence, previous reports evidence a 
key role played by MMP-2 and MMP-9 in embryonic 
development. The present results suggest that a success-
ful implantation may be predicted by an assessment of 
the culture media of developing embryos based on the 
cutoff points of the ROC curve herein set for these two 
proteinases.

In conclusion, the current findings demonstrate the 
feasibility of detecting proMMP-2 and proMMP-9 activ-
ity in the culture media of embryos on day 5 of devel-
opment by using in gel zymography. Additionally, such 
activity was associated with the implantation capacity 
of the embryos. Therefore, an evaluation of this activ-
ity could serve as a non-invasive method for determining 
the viability of human embryos developed in vitro.
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analysis of the ROC curve and participated in the discus-
sion of results and writing of the manuscript. FVM-H 
and MO-C performed the analysis of MMP activity and 
participated in the writing of the manuscript. HF-H par-

Figure 3. Model of active proMMP-2 and proMMP-9 secreted 
from embryos into the culture media. 
(A) The developing embryos secrete interleukin type 1-beta (IL-
1β) (Librach et al., 1994), tumor necrosis factor-alpha (TNFα) (Zhu 
et al., 2012) and epidermal growth factor (EGF) (Maia-Filho et al., 
2015), promoting the expression of the collagenolytic protein 
extracellular matrix (Kitanaka et al., 2019; Wang et al., 2003). The 
actMMP-2 protein has been shown to remove propeptides asso-
ciated with the catalytic site of proMMP-9, leading to activation 
of its degradative function (Kitanaka et al., 2019; Maia-Filho et al., 
2015). (B) Although an embryo has the capacity to secrete IL-1β 
into the culture medium (Librach et al., 1991), there is a decrease 
in the signaling pathways for the activation of MMPs. Cytotroph-
oblast cells incubated with 5 nM recombinant tissue inhibitor of 
MMP (recTIMP-2) reduces the percentage of invasiveness (Basu et 
al., 2018). Different polymorphisms found in the promoter regions 
have been associated with recurrent abortions (Bischof & Campa-
na, 2000).
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ticipated in the design of the study, analysis of results, 
and writing of the manuscript, as well as obtaining finan-
cial and material support for the study.
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