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Imiquimod-induced psoriasis is widely-employed to 
study disease pathogenesis and to screen drugs. While 
the original protocol was published more than a decade 
ago and has been rigorously used in research since then, 
a modified protocol was described recently with several 
advantages including milder systemic manifestations al-
though the disease morphology is highly conserved. Be-
ing a toll-like receptor 7 and 8 agonist, IL-23/IL-17 axis 
predominates in imiquimod-induced psoriasis. In addi-
tion, different immunocytes were described to aggravate 
or supress the disease. This article aims to review the 
currently available protocols of imiquimod-induced pso-
riasis in vivo, to characterize the model as described in 
literature and to define the five important independent 
factors adversely influencing the model which research-
ers should pay attention to.
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INTRODUCTION

Animal models of psoriasis are categorized into four 
categories: the first category represents models resulting 
from spontaneous mutations, such as homozygous asebia 
(Scd1ab/Scd1ab) and flaky skin (Ttcfsn/Ttcfsn) mice where 
the latter model shares with human psoriasis acanthosis, 
parakeratosis, and corneal neutrophils infiltration. The 
second category represents genetically-engineered models 
where epidermal proteins like keratins and/or cytokines 
are modified to produce features resembling psoriasis. 
The third category includes humanized models or mod-
els generated by xenotransplantation where lesional skin 
biopsy or skin equivalent is transplanted to mice. A re-
cently-described but frequently used model is the directly 
induced model, where imiquimod is used to produce an 
immunological reaction resembling the one seen in pso-
riasis, largely mediated by IL-23/IL-17 axis and TNF-α 
(Guerrero-Aspizua et al., 2020; Jean & Pouliot, 2010; 
Jeong & Lee, 2018).

This article aims to review the model of imiquimod-
induced psoriasis, highlighting the currently published 
two induction protocols and characterizing the model 
in terms of dominant cytokines and cellular infiltrate. It 
also tackles the five factors that may influence disease 
modelization.

THE ORIGINAL AND MODIFIED PROTOCOLS OF 
IMIQUIMOD-INDUCED PSORIASIS

Imiquimod was first described in the mid-1990s as an 
immunomodulatory agent that augments the innate and 
adaptive immune systems. It is a toll-like receptor-7 and 
8 agonist. It obtained the US Food and Drug Adminis-
tration approval to treat anogenital warts, facial actinic 
keratoses and superficial basal cell carcinoma (Hanna et 
al., 2016). Topical application of imiquimod may induce 
psoriasis (Wu & Strutton, 2004).

Van der Fits and others (van der Fits et al., 2009) 
were the first to employ imiquimod to modelize psoriasis 
in vivo. They applied 62.5 mg of imiquimod 5% cream 
(Aldara) daily, equivalent to 3.125 mg of active ingredi-
ent, on the shaved back and right ear of BALB/c and 
C57BL/6 mice for five or six consecutive days and they 
assessed the severity of psoriasis using modified Psoriasis 
Area and Severity Index (PASI). Signs of psoriasis start 
to appear within the first three days and severity steadily 
increases till the end of the experiment. Authors report-
ed lack of difference between the two strains of mice. 
Imiquimod-treated skin shows the cardinal histopatho-
logical features of psoriasis such as acanthosis (Singh et 
al., 2019), parakeratosis and hypogranulosis. Immuno-
histochemical staining shows infiltration of dendrocytes, 
neutrophils and CD4+ cells. Imiquimod also induces IL-
23 and augments IL-17A, IL-17F and IL-22 production 
(van der Fits et al., 2009). 

Horvath and others (Horvath et al., 2019) further 
modified the original protocol. They applied 25 mg of 
imiquimod 5% cream in Finn chambers on the back of 
C57BL/6 mice daily. This protocol results in erythema 
after the second application and scaling and skin thick-
ening after the third application. The modified protocol 
was reported to be comparable to the original one. On 
histological examination, features of psoriasis such as 
parakeratosis, acanthosis, Munro microabscesses and di-
lated blood vessels in the dermal papillae were observed 
among both groups. Consistently, immunohistochemical 
examination reveals overexpression of Ki-67 in both. 
However, the modified protocol minimizes systemic 
manifestations and allows for prolonged imiquimod 
treatments. 

Imiquimod-induced psoriasis model is largely used 
to study disease pathogenesis and to screen drugs. The 
model was employed for drug screening in more than 
100 publications. In the majority of studies, the experi-
mental drug of interest was administered concurrently on 
the same day of psoriasis induction. In a limited number 
of studies, it was started a few days before (1–21 days) 
or after induction. Regarding the protocol of induction, 
majority of studies complied with the original duration 
described as five or six consecutive days; few, howev-
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er, applied the cream for shorter (three to four days) or 
longer periods (vast majority for seven days, up to 15 
days). Prolonged daily application of imiquimod cream 
results in tachyphylaxis where Ki-67 expression diminish-
es in alignment with spontaneous attenuation and disap-
pearance of erythema and scaling at three to four weeks 
despite continuous application of the cream (Kataoka et 
al., 2018). 

Some studies lack a positive control; but where a pos-
itive control was used, it is a topical or systemic prepa-
ration that matches the route of administration of the 
experimental agent. Topical control preparations include 
betamethasone, calcipotriol, clobetasol, dexamethasone, 
dithranol, methotrexate and tacrolimus. Systemic control 
preparations include cyclosporine orally, dexamethasone 
orally and intraperitoneally, etanercept, methotrexate 
orally and intraperitoneally and tacrolimus. 

CHARACTERIZATION OF IMIQUIMOD-INDUCED 
PSORIASIS MODEL

Jabeen and others (Jabeen et al., 2020) character-
ized the model of imiquimod-induced psoriasis where 
they applied 62.5 mg of imiquimod 5% cream for eight 
days. Cutaneous concentration of imiquimod approaches 
100 μg/g on day 2 and it doubles by six folds on day 8 
corresponding with a pronounced worsening of redness, 
thickness, scaling and total modified PASI. Acanthosis is 
evident on day 8 compared with day 2, explaining the 
clinically apparent thickness. Dermal hypervascularity is 
also marked, explaining the progressive redness. In terms 
of cytokine profile, elevation of IL-1β, IL-6 and IL-17A 
was observed in skin and TNF-α and IL-17A in serum. 
Disease progression associates with elongation of spleen, 
enlargement of total area of lymph nodes, and loss of 
weight independently of food intake (Zhang et al., 2020).

Macrophages and dendrocytes were investigated in the 
current model of psoriasis. While plasmacytoid dendro-
cytes are absent in imiquimod-induced lesions, the model 
shows a biphasic cellular behaviour. During the early 
phase, neutrophils infiltrate the epidermis and monocytes 
predominate in the dermis. Whereas in the late phase, 
Langerhans cells are pronounced in the epidermis and 
macrophages in the dermis. Depletion of Langerhans 
cells results in massive neutrophil infiltrate during the 
late phase, suggesting a potential anti-inflammatory role 
of Langerhans cells (Terhorst et al., 2015). On the con-
trary (Xiao et al., 2017) concluded that Langerhans cell 
depletion attenuates psoriasis and downregulates psoria-
sis-associated cytokine gene expression. (Lee et al., 2018) 
found that resident and monocyte-derived Langerhans 
cells secrete IL-23. Depletion of these cells inhibits IL-
22 and IL-17A secretion (Lee et al., 2018), diminishes 
gamma-delta T-cell infiltration (Lee, 2016) and ultimately, 
attenuates psoriasis (Lee et al., 2018). Parallelly (Yoshiki 
et al., 2014) found IL-23-secreating Langerhans cells to 
induce IL-17A-producing gamma-delta T-cells. Depletion 
of Langerhans cells decreases Th-17-related cytokines 
and ameliorates psoriasis. In contrast, Kusuba and others 
(Kusuba et al., 2016) found that depletion of neutrophils 
early during psoriasis induction inhibits the infiltration 
of dermal monocytes, whereas depletion of both, neu-
trophils and monocytes, significantly attenuates psoriasis 
(Kusuba et al., 2016). 

While IL-17 receptor is expressed on different cells, 
including T-cells and keratinocytes, its importance is 
cell-specific. For instance, deletion of keratinocyte’s IL-
17 receptor reduces neutrophil infiltration and abolishes 

psoriasis; yet, this is not the case with T-cell-expressed 
receptor, emphasizing on keratinocytes’ role in neutro-
phil chemoattraction (Moos et al., 2019). Likewise, IL-17 
abrogation inhibits imiquimod-induced psoriasis (Ha et 
al., 2013). On the contrary (El Malki et al., 2013) found 
that in IL-17A receptor-knockout mice, imiquimod may 
still induce psoriasis independently of IL-17 pathway. 
The C-X-C motif chemokine receptor type-2 is involved 
in neutrophil chemoattraction as well. It promotes neu-
trophil-produced leukotriene-B4 and augments neutrophil 
chemotaxis and infiltration (Sumida et al., 2014). Like-
wise, kallikrein-related peptidase-8 is elevated in psoria-
sis. If knocked out, the severity of imiquimod-induced 
psoriasis is comparable to wildtype, however, lesions lack 
neutrophil microabscesses (Iinuma et al., 2015).

IL-1 and IL-36α chemoattract neutrophils. Both mol-
ecules mediate human generalized pustular psoriasis 
which is accompanied by systemic symptoms such as fe-
ver and malaise. In the current model of psoriasis, mice 
also display systemic symptoms such as weight loss and 
generalized malaise, suggesting the contribution of IL-1 
and IL-36α to model development. Deficiency of IL-1 
receptor-1 or IL-36α variably attenuates psoriasis; how-
ever, deficiency of both absolutely abolishes the disease 
(Alvarez & Jensen, 2016). IL-36 role is further verified in 
IL-36 receptor-knockout mice where these are resistant 
to imiquimod (Goldstein et al., 2019). 

Imiquimod-treated mice exhibit antihistamine-resistant 
itching that is largely driven by μ-opioid receptor lo-
cated in the epidermis, the dorsal root ganglia, and the 
spinal cord. In alignment, naloxone, a μ-opioid antago-
nist successfully inhibits itching in imiquimod-treated 
mice (Takahashi et al., 2017). Itching is also mediated by 
sphingosine 1-phosphate receptor-3, which if knocked 
out, scratching behaviour improves (Hill et al., 2020). In 
addition, Oishi and others (Oishi et al., 2019) found im-
iquimod treatment to associate with expansion of mas-
tocytes and overexpression of the nerve growth factor, 
the neurotrophic factor neurotrophin 3 and enkephalin 
precursor preproenkephalin (Oishi et al., 2019).

REGULATION OF IMIQUIMOD-INDUCED PSORIASIS

Imiquimod-induced psoriasis is negatively regulated by 
B-cells (Yanaba et al., 2013), regulatory T-cells (Choi et 
al., 2020; Oka et al., 2017), matrix remodelling associat-
ed-7 (Ning et al., 2018), indoleamine 2, 3-dioxygenase 2 
(Elizei et al., 2018; Fujii et al., 2020), IFN regulatory fac-
tor-2 (Kawaguchi et al., 2018), IFN regulatory factor-5 
(Nakao et al., 2020), dermokine β/γ (Tokuriki et al., 
2016), IL-10 (Jin et al., 2018), IL-27 (Chen et al., 2017; 
Shibata et al., 2013), poly(ADP-ribose) polymerase-1 
(Kiss et al., 2020), endogenous n-3 polyunsaturated fatty 
acids (Qin et al., 2014), L-selectin and ICAM-1 (Mitsui et 
al., 2015).

The regulatory role of B-cells, regulatory T-cells and 
IL-10 is evident in different studies. In a model of 
CD19–/– mice, exacerbation of psoriasis is attributed 
to the loss of IL-10-secreting regulatory B-cell subset 
(Yanaba et al., 2013). Likewise, depletion of regulatory T-
cells disturbs the closely regulated gamma-delta T-cells, 
augments TNF-α and IL-17A secretion and aggravates 
the disease (Choi et al., 2020). Neutralization of IL-10 in 
imiquimod-induced psoriasis promotes epidermal thick-
ening, increases neutrophil infiltration and accentuates 
IL-23/IL-17 axis (Xu et al., 2018). Likewise, knocking 
out IL-10 aggravates psoriasis macroscopically and mi-
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croscopically, emphasising on its anti-inflammatory role 
in the disease (Jin et al., 2018). 

FACTORS INFLUENCING IMIQUIMOD-INDUCED 
PSORIASIS

Five factors adversely modify the model of imiqui-
mod-induced psoriasis: the brand of imiquimod 5% 
cream, mouse strain, mouse sex, stress and obesity. 

The brand of the commercially available imiquimod 
5% cream may interfere with the model. While (Singh et 
al., 2019) claimed generic formulations of imiquimod to 
produce a psoriasiform inflammation that is comparable 
to Aldara, Luo and others (Luo et al., 2016) found that in 
comparison with Aldara, Likejie creams mediates a mild-
er form of psoriasis with a modified PASI of 3.25±1.56 
(compared with 9.81±0.84 in Aldara), a less pronounced 
acanthosis with a Backer’s score of 2.93±1.07 (compared 
with 6.47±1.50 in Aldara) and an epidermal thickness 
of 49.79±14.16 μm (compared with 85.62±17.55 μm in 
Aldara), concluding that different brands may adversely 
affect the successful establishment of the model (Luo et 
al., 2016). 

In terms of the employed strain of mice, although van 
der Fits and others (van der Fits et al., 2009) described 
their protocol in two different strains, (Swindell et al., 
2017) reported variation in modelization across six dif-
ferent strains of mice using a five-day course of 62.5 mg 
imiquimod 5% cream (Aldara). Microarray showed gene 
expression of imiquimod-induced psoriasis to largely 
overlap with that of human psoriasis. C57BL/6 mice, in 
particular, show the highest consistency, in contrast to 
MOLF/EiJ and 129X1/Sv mice where gene expression 
is opposite to human psoriasis. In terms of IL-17 gene 
expression, C57BL/6 mice highly express IL-17A, IL-
17B, IL-17C and IL-17F. D’Souza and others (D’Souza 
et al., 2020) examined the psoriatic changes induced by 
imiquimod in two different strains: BALB/c and the 
Swiss mice and concluded that imiquimod induces psori-
atic changes macroscopically and microscopically among 
both strains, although these are more pronounced in the 
Swiss mice. 

In terms of sex differences, and compared with male 
mice, female mice develop severe psoriasis in response 
to imiquimod, resulting in a greater weight loss, sig-
nificant distress and unexpected early death. Inductions 
in females may also mandate euthanization (Alvarez & 
Jensen, 2016). In contrast, the influence of patient’s sex 
on the severity of psoriasis is controversial. While fe-
male patients were found to significantly display milder 
psoriasis than male patients in two studies conducted in 
Swaziland and Sweden (Guillet et al., 2022; Hagg et al., 
2017), this was contradicted by a third study (Goldburg 
et al., 2022).

Wang and others (Wang et al., 2020) investigated 
the effect of stress on imiquimod-induced psoriasis in 
a model of mice with emotional stress. In comparison 
with a control group with psoriasis kept off stress, stress 
was found to prolong the disease, to upregulate IL-1β, 
IL-17 and IL-22 gene expression and to increase IL-
1β, IL-12, IL-17 and IL-22 secretion. This should fur-
ther explain the role of stress in human psoriasis. For 
instance, stressful events were found to proceed psoriasis 
onset and were reported to trigger the disease in 31-88% 
of patients. Stress was also observed to aggravate pso-
riasis where daily stressors may expand the disease and 
worsens pruritus (Rigas et al., 2019; Rousset & Halioua, 
2018). This is evident in pediatrics as well, where child-

hood trauma is commoner in patients with psoriasis, and 
likewise, children with psoriasis score higher in anxiety 
scores (Wintermann et al., 2022).

Obesity is known to exacerbate psoriasis in humans. 
This is also evident in imiquimod-induced psoriasis 
model where obese mice display thicker psoriatic le-
sions compared with non-obese subjects. Diet restriction 
partially improves psoriasis and cytokine profile (Hong 
et al., 2019; Kanemaru et al., 2015) and consistently, lep-
tin deficiency attenuates the disease (Stjernholm et al., 
2017). The relationship between human psoriasis and 
obesity was vigorously studied. A metanalysis found the 
odd ratio of obesity in psoriasis is 1.66, and it can ap-
proach 2.23 in patients with severe disease (Armstrong 
et al., 2012). A systematic review did also conclude that 
seven out of nine studies found a statistically significant 
association between increased psoriasis severity and in-
creased body mass index (Fleming et al., 2015). Such an 
association is attributed to a shared mechanism involving 
inflammatory mediators and adipokines (Jensen & Skov, 
2016). 

CONCLUSIONS

Imiquimod-induced psoriasis serves as an acceptable 
model to study IL-23/IL-17 axis and to screen pharma-
ceutical agents in psoriasis. While the model could be 
induced using two protocols, the original protocol de-
scribed by van der Fits and others (van der Fits et al., 
2009) is widely employed in different studies. To en-
sure consistency of results, researchers should take into 
account that variation in the brand of imiquimod 5% 
cream, strain of mice, sex of mice, exposure to stress 
and obesity may adversely modify the course of disease.  
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