Comparison of metabolic effects of mitochondrial dysfunctions in the context of vulnerability to fatigue: computer simulation study

Michał J. Sabat Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology Jagiellonian University, Gronostajowa 7, Kraków, Poland

Appendix

Description of the mathematical model used in this work. Based on the skeletal muscle model description from http://awe.mol.uj.edu.pl/~benio/models.html [accessed 9 July 2022]

Abbreviations and subscripts

DH - NADH supply, LK - proton leak, CK - creatine kinase; AK - adenylate kinase; GL - glycolysis; EF - proton efflux/influx to/from blood; e - external (cytosolic); i - internal (mitochondrial); t - total; f - free; m - magnesium complex; j - monovalent.

Constants

Total concentrations constants:

 $O_2 = 30 \ \mu M$ $c_t = 270 \ \mu M \ (c^{2+} + c^{3+}, \text{ total concentration of}$ cytochrome c) $a_t = 135 \ \mu M \ (a^{2+} + a^{3+}, total \ concentration \ of$ cytochrome a) $U_t = 1350 \ \mu M \ (UQH2 + UQ, \text{ total concentration})$ of ubiquinone) $N_t = 2970 \ \mu M$ (NADH + NAD+, total concentration of NAD) $Mg_{fe} = 4000 \ \mu M$ (free external magnesium concentration) $Mg_{fi} = 380 \ \mu M$ (free internal magnesium concentration) Aisum = 16260 µM (ATPti + ADPti, total internal adenine nucleotide concentration) $A_{eSUM} = 6700 \ \mu M \ (ATPte + ADPte + AMPe)$ total external adenine nucleotide concentration) C_{SUM} = 35000 µM (Cr + PCr, total creatine concentration)

Starting metabolite concentrations: (Independent variables)

NADH = 1757.9 μ M UQH₂ = 1242.7 μ M c²⁺ = 81.16 μ M ATP_{ti} = 12939 μ M Pi_{ti} = 17330 μ M H_i = 0.03624 μ M ATPt_e = 6693.0 μ M ADPt_e = 7.182 μ M AMP_e = 0.0216 μ M Pi_{te} = 3215.6 μ M PCr = 28293 μ M H_e = 0.1004 μ M

Respiration rate (vC4) at rest

vC4 = 264 µM *min⁻¹

Enzymatic/transporter activity rate constants and other constants

 $k_{DH} = 28074 \ \mu \text{M min}^{-1}$ $K_{mN} = 100 \ p_D = 0.8$

k_{C1}= 238.95 μM mV⁻¹ min⁻¹

 k_{C3} = 136.41 µM mV⁻¹ min⁻¹ $k_{C4} = 3.600 \ \mu \text{M}^{-1} \ \text{min}^{-1}$ K_{mO} = 120 µM (mechanistic K_m for O₂) $k_{SN} = 34316 \,\mu\text{M min}^{-1}$ $n_{4} = 2.5$ (phenomenological H⁺/ATP stoichiometry of ATP synthase) $k_{Fx} = 54572 \ \mu M \ min^{-1}$ K_{mADP} = 3.5 μ M k_{Pl}= 69.421 μM⁻¹ min⁻¹ k_{UT} = 781.97 µM min⁻¹ (state of rest; A_{UT} = 1) *K*_{*mA*}= 150 μM $k_{LK1} = 2.500 \ \mu M \ min^{-1}$ $k_{1K2} = 0.038 \text{ mV}^{-1}$ $k_{fAK} = 862.10 \ \mu M^{-1} \ min^{-1}$ $k_{bAK} = 22.747 \ \mu M^{-1} \ min^{-1}$ $k_{fCK} = 1.9258 \ \mu M^{-2} \ min^{-1}$ $k_{bCK} = 0.00087538 \ \mu M^{-1} \ min^{-1}$ $k_{EF} = 10000 \ \mu M \ min^{-1}$ $pH_0 = 7.0$ $k_{GL} = 17.2 \text{ min}^{-1}$ $H^{+rest} = 0.1 \ \mu M$ R_{c_m} = 15 (cell volume/mitochondria volume ratio) $B_N = 5$ (buffering capacity coefficient for NAD) $T = 298 \, \text{K}$ R = 0.0083 kJ*mol⁻¹K⁻¹ F = 0.0965 kJ*mol⁻¹mV⁻¹ S = 2.303*R*T Z = 2.303*R*T/F $u = 0.861 (= \Delta \Psi / \Delta p)$ $c_{\text{buffi}} = 0.022 \text{ M H+/pH}$ unit (buffering capacity for H+ in matrix) *c*_{buffe} = 0.025 M H+/pH unit (buffering capacity for H+ in cytosol) $pK_a = 6.8$ $\Delta G_{P0} = 31.9 \text{ kJ mol}^{-1}$ $E_{mN0} = -320 \text{ mV}$ $E_{mU0} = 85 \text{ mV}$ $E_{mc0} = 250 \text{ mV}$ $E_{ma0} = 540 \text{ mV}$ k_{DTe} = 24 μM (magnesium dissociation constant for external ATP) (magnesium dissociation constant for external ADP) k_{DDe} = 347 μM k_{DTi} = 17 μM (magnesium dissociation constant for internal ATP) $k_{DDi} = 282 \, \mu M$ (magnesium dissociation constant for internal ADP)

Kinetic equations

Substrate dehydrogenation: $v_{DH} = k_{DH} \frac{1}{\left(1 + \frac{K_{mN}}{NAD^+/NADH}\right)^{p_D}}$ Complex I: $v_{C1} = k_{C1} \cdot \Delta G_{C1}$ Complex III: $v_{C3} = k_{C3} \cdot \Delta G_{C3}$ Complex IV: $v_{C4} = k_{C4} \cdot a^{2+} \cdot c^{2+} \frac{1}{1 + \frac{K_{mD}}{0_2}}$ ATP synthase: $v_{SN} = k_{SN} \frac{\gamma-1}{\gamma+1}, \gamma = 10^{\Delta G_{SN}/Z}$ ATP/ADP carrier. $v_{EX} = k_{EX} \cdot \left(\frac{ADP_{fe}}{ADP_{fe} + ATP_{fe} \cdot 10^{-\Psi_{e}/Z}} - \frac{ADP_{fi}}{ADP_{f1} + ATP_{f1} \cdot 10^{-\Psi_{I}/Z}}\right) \cdot \left(\frac{1}{1 + K_{mADP}/ADP_{fe}}\right)$ Phosphate carrier: $v_{PI} = k_{PI} \cdot (Pi_{je} \cdot H_e - Pi_{ji} \cdot H_i)$ ATP usage: $v_{UT} = k_{UT} \frac{1}{1 + \frac{K_{mA}}{ATP_{te}}}$ Proton leak: $v_{LK} = k_{LK1} \cdot (e^{k_{LK2} \cdot \Delta p} - 1)$ Adenylate kinase: $v_{CK} = k_{fCK} \cdot ADP_{fe} \cdot ADP_{me} - k_{bAK} \cdot ATP_{me} \cdot AMP_{e}$ Creatine kinase: $v_{CK} = k_{fCK} \cdot ADP_{te} \cdot PCr \cdot H_e^+ - k_{bCK} \cdot ATP_{te} \cdot Cr$ Proton efflux: $v_{EF} = k_{EF} \cdot (pH_0 - pH_e)$ Glycolysis: $v_{GL} = k_{GL} \cdot (ADP_{te} + AMP_e)(H_{rest}^+/H^+)$ (anaerobic glycolysis present)

Set of differential equations

$$\begin{split} N\dot{A}DH &= (v_{DH} - v_{C1}) \cdot R_{cm}/B_{N} \\ U\dot{Q}H_{2} &= (v_{C1} - v_{C3}) \cdot R_{cm} \\ \dot{c}^{2+} &= (v_{C3} - 2 \cdot v_{C4}) \cdot 2 \cdot R_{cm} \\ \dot{O}_{2} &= 0 \text{ (constant saturated oxygen concentration)} \\ A\dot{T}P_{t1} &= (v_{SN} - v_{EX}) \cdot R_{cm} \\ P\dot{i}_{t1} &= (v_{PI} - v_{SN}) \cdot R_{cm} \\ A\dot{T}P_{te} &= (v_{EX} - v_{UT} + v_{AK} + v_{CK} + 1.5 \cdot v_{GL}) \cdot R_{cm}/(R_{cm} - 1) \\ A\dot{D}P_{te} &= (v_{UT} - v_{EX} - 2 \cdot v_{AK} - v_{CK} - 1.5 \cdot v_{GL}) \cdot R_{cm}/(R_{cm} - 1) \\ P\dot{i}_{te} &= (v_{UT} - v_{PI} - 1.5 \cdot v_{GL}) \cdot R_{cm}/(R_{cm} - 1) \\ P\dot{C}r &= -v_{CK} \cdot R_{cm}/(R_{cm} - 1) \\ H_{e}^{+} &= (2 \cdot (2 + 2 \cdot u) \cdot v_{C4} + (4 - 2 \cdot u) \cdot v_{C3} + 4 \cdot v_{C1} - n_{A} \cdot v_{SN} - u \cdot v_{EX} - (1 - u) \cdot v_{PI} - v_{LK} - s \cdot v_{CK} - v_{EF} \\ &+ v_{GL} - 0.2 \cdot v_{DH})/r_{buffe} \cdot R_{cm}/(R_{cm} - 1) \end{split}$$

Other calculations

 $c^{3+} = c_{+} - c^{2+}$ $ADP_{fi} = ADP_{ti}/(1 + Mg_{fi}/k_{DDi})$ $ADP_{mi} = ADP_{ti} - ADP_{ti}$ $UQ = U_t - UQH_2$ $NAD^+ = N_{t^-} NADH$ $pH_i = -\log(H_i/10^6)$ (H_i expressed in μ M) $Cr = C_{SUM} - PCr$ $pH_e = -\log (H_e/10^6)$ (H_e expressed in μ M) $\Delta pH(mV) = Z(pH_i - pH_e)$ $AMP_e = A_{eSUM} - ATP_{te} - ADP_{te}$ $ADP_{ti} = A_{iSUM} - ATP_{ti}$ $\Delta p(mV) = 1/(1-u)\Delta pH$ $ATP_{fe} = ATP_{te}/(1 + Mg_{fe}/k_{DTe})$ $\Delta \Psi(\mathrm{mV}) = -(\Delta \mathrm{p} - \Delta \mathrm{pH})$ Ψ i(mV) = 0.65 * $\Delta \Psi$ $ATP_{me} = ATP_{te} - ATP_{fe}$ $\Psi e(mV) = -0.35 \cdot \Delta \Psi$ $ADP_{fe} = ADP_{te}/(1 + Mg_{fe}/k_{DDe})$ $\mathrm{Pi}_{\mathrm{ie}} = \mathrm{Pi}_{\mathrm{te}} / (1 + 10^{\mathrm{pHe-pKa}})$ $ADP_{me} = ADP_{te} - ADP_{fe}$ $\mathrm{Pi}_{\mathrm{ii}} = \mathrm{Pi}_{\mathrm{ti}} / (1 + 10^{\mathrm{pHi} \cdot \mathrm{pKa}})$ $ATP_{fi} = ATP_{ti}/(1 + Mg_{fi}/k_{DTi})$ $ATP_{mi} = ATP_{ti} - ATP_{fi}$

 $c_{0i} = (10^{-pHi} - 10^{-pHi-dpH})/dpH ('natural' buffering capacity for H^+ in matrix; dpH = 0.001)$ $r_{buffi} = c_{buffi}/c_{0i} (buffering capacity coefficient for H+ in matrix)$ $c_{0e} = (10^{-pHe} - 10^{-pHe-dpH})/dpH ('natural' buffering capacity for H^+ in cytosol; dpH = 0.001)$ $r_{buffe} = c_{buffe}/c_{0e} (buffering capacity coefficient for H^+ in cytosol)$ $dG_{SN} = n_A \cdot \Delta p - \Delta G_P (thermodynamic span of ATP synthase)$ $\Delta G_P = \Delta G_{P0}/F + Z \cdot \log (10^6 \cdot ATP_{ti}/(ADP_{ti} \cdot Pi_{ti})) (concentrations expressed in \mu M)$ $E_{mN} = E_{mN0} + Z/2 * \log (NAD^+/NADH) (NAD redox potential)$ $E_{mU} = E_{mU0} + Z/2 * \log (UQ/UQH_2) (ubiquinone redox potential)$ $E_{ma} = E_{mc0} + Z * \log (c/c^{2+}) (cytochrome c redox potential)$ $E_{ma} = E_{mc} + \Delta p \cdot (2 + 2u)/2 (cytochrome a_3 redox potential)$ $A_{3/2} = 10^{(Ema-Ema0)/Z} (a^{3+}/a^{2+} ratio)$ $a^{2+} = a_t/(1 + A_{3/2}) (concentration of reduced cytochrome a_3)$

 $\Delta G_{C3} = E_{mc} - E_{mU} \Delta p * (4-2u)/2$ (thermodynamic span of complex III)

 $s = 0.7 \cdot (pH - 6.0)^* 0.5$ (net stoichiometry of proton consumption/production by creatine kinase when coupled with ATP consumption/production, respectively; Lohman reaction)