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miRNA-301 As a molecule promoting necrotizing enterocolitis 
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Objective: Necrotizing enterocolitis (NEC) is a devastat-
ing inflammatory disease with high morbidity and mor-
tality, mainly affecting premature infants. This study 
aimed to explore the role of miRNA-301a in the patho-
genesis of NEC. Methods: The differentially expressed 
miRNAs and mRNAs were screened by collating RNA-Seq 
data from the GEO database of intestinal tissue samples. 
The differential miRNA-mRNAs regulatory network was 
constructed based on functional enrichment analysis. 
Newborn BALB/c mice were used to establish the NEC 
model. Haematoxylin and eosin staining was used to 
assess intestinal damage. The levels of IL-8 and TNF-α 
in mouse serum were evaluated by ELISA. qRT-PCR was 
used to detect the expression of miRNA-301a in intesti-
nal tissues. Results: Bioinformatics analysis showed that 
miRNA-301a was involved in intestinal lesions. Intestinal 
tissue damage was reduced and serum levels of the in-
flammatory cytokines IL-8 and TNF-α were lower in NEC 
model mice treated with miRNA-301a antagonists. The 
level of miRNA-301a in intestinal tissues of NEC model 
mice was significantly higher than in the control group 
and miRNA-301a antagonists treated group. Conclusion: 
miRNA-301a plays an important role in the pathogenesis 
of NEC by promoting inflammation, and is a potential 
therapeutic target of NEC.
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INTRODUCTION

Despite decades of studies on necrotizing enterocolitis 
(NEC), NEC continues to be the most prevalent surgi-
cal condition that crises the lives of newborns (Meister 
et al., 2020). Among very low birth weight infants, the 
prevalence of NEC ranges from 5% to 10%, and more 
than 50% of patients with NEC require surgery. Fur-
thermore, the mortality rate of NEC treated by surgery 
ranges from 30% to 50% (Flahive et al., 2020; Bell et al., 
2021). Hence, it is urgent to explore effective and reli-
able biomarkers for early identification of infants at risk 
of progression to improve the prognosis of NEC.

MicroRNAs (miRNAs) are a family of highly con-
served RNAs, ranging in size from 19 to 24 nucleotides, 
and regulate the 3’-untranslated region of target mRNA 
transcripts (Chen et al., 2013). In recent years, substantial 

progress has been achieved in understanding the role of 
diverse miRNAs in human diseases, including NEC (Cai 
et al., 2022; Donda et al., 2022). MiRNA-124 has been 
identified to facilitate NEC by targeting ROCK1 and 
promoting inflammatory cell infiltration in intestinal cells 
(Yin et al., 2019). The increased expression of miRNA-
141-3p could attenuate NEC damage to intestinal tissues 
by targeting MNX1 (Chen et al., 2020). In addition, miR-
NA-301a facilitated intestinal mucosal inflammation by 
inducing IL-17A and TNF-α in inflammatory bowel dis-
ease (IBD) and colorectal cancer (He et al., 2016). How-
ever, the role of miRNA-301a in NEC remains unclear.

In this study, a miRNA-mRNA regulatory network 
was successfully established by bioinformatics analysis 
and key miRNAs were screened based on this network. 
Next, a neonatal mouse NEC model was successfully 
established and the expression of miRNA-301a in the 
intestinal tissues and the levels of inflammatory factors 
TNF-α and IL-8 in the serum of mice were examined.

MATERIALS AND METHODS

Source of sample

MRNA and miRNA microarray data of intesti-
nal tissue samples were gathered from GEO Datasets. 
GSE115513 includes 31 normal and 30 diseased intesti-
nal tissue samples. GSE184093 includes 9 normal and 9 
diseased intestinal tissue samples. The datasets were ana-
lysed by using PERL 5.30.2 (https://www.PERL.org/). 
The two datasets were sorted in the order of normal and 
experimental groups to acquire mRNA and miRNA data.

Differentially expressed miRNAs and mRNAs

The differentially expressed miRNAs and mRNAs 
were filtered by using the LIMMA package in the R 
software (https://rstudio.com/, version 3.6.2). The fil-
tering criteria were set as |log2(fold change) |>1 and 
FDR (False Discovery Rate) <0.05. The “pheatmap” in 
R (3.6.2) was then applied to create differential volcano 
maps of the filtered differentially expressed mRNAs and 
miRNAs, respectively.

Identification of miRNA targets and construction of 
miRNA-mRNA regulatory network

The target genes of 222 differential miRNAs were 
predicted by using the gene function analysis tool Fun-
Rich (3.1.3) (http://www.funrich.org/). The differentially 
expressed mRNAs were crossed with the target genes of 
the miRNAs to generate the shared mRNAs and corre-
sponding miRNAs, and the regulatory network was visu-
alised using Cytoscape (3.7.2) (https://cytoscape.org/re-
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lease_notes_3_7_2.html) to produce the miRNA-mRNA 
regulatory network.

GO and KEGG enrichment analyses

To further elucidate the biological functions of target 
genes in the regulatory network, GO (https://geneon-
tology.org/docs/go-enrichment-analysis/) and KEGG 
enrichment analyses (https://www.genome.jp/kegg/
pathway.html) of differential mRNAs were conducted 
with a screening condition of p<0.05 and q<0.05 and all 
outcomes were presented as bar graphs using the Bio-
conductor plugin in R software (Gao et al., 2018).

Mice

Seventy-five newborn and pathogen-free BALB/c 
mice (7–10 days old) were obtained from the Animal 
Research Centre of Chengde Medical College (Chengde, 
China). All mice were housed at 28–30°C and 45–65% 
humidity for 12 hours on a light/dark cycle. This study 
was approved by the Animal Care and Use Committee 
of the Affiliated Hospital of Chengde Medical College 
(Approved No. 000134, date 2020-6-17). Mice were ran-
domized into three groups (n=25 mice per group): the 
NEC group, the control group, and the NEC+anti-miR-
NA-301a group.

Neonatal mouse NEC model

The neonatal mouse NEC model was established as 
described previously (Nolan et al., 2021). Mice in the 
NEC and NEC+anti-miRNA-301a groups (n=25) were 
fed Esbilac puppy formulae, which was complemented 
by bacteria cultured from the faeces of infants with se-
vere NEC (12.5 μl of faecal slurry in 1 ml of formula). 
Briefly, a syringe filled with formulae was attached to a 
peripherally inserted central catheter (PICC) line. Next, 
the PICC line was gently introduced into the mouse’s 
stomach by using forceps. Then the formulae were 
slowly dispensed into the stomach, and the PICC line 
was slowly withdrawn from the oral cavity (Nolan et al., 
2021). Mice were fed every 3 hours and after 3 feeds 
were placed under 5% O2 + 95% N2 for 10 minutes of 
stress to induce NEC. The feeding volume was 0.1 ml 
and gradually increased to 0.25 ml. The animals were 
sacrificed by decapitation on Day 5. For NEC+anti-
miRNA-301a group, the mice were orally administered 
miRNA-301a antagonist (sequence mGmCmUmU-
mUmGmAmCmAmAmUmAmCmUmAmUmUmGmC-
mAmCmUmG, Genecreate LTD, Wuhan, China) follow-
ing the manufacturer’s manual once a day, starting at the 
beginning of NEC induction (Day 0) and continuing to 
Day 5.

Haematoxylin and eosin (H&E) staining

The intestinal tissues were dissected and washed with 
PBS at 4°C and fixed with 4% paraformaldehyde, par-
affin-embedded, sectioned at 5 μm and stained with he-
matoxylin and eosin (H&E). The intestinal damage was 
analysed under a microscope with a 40x lens by two in-
dependent pathologists, who scored it double-blind ac-
cording to published criteria (Zhang et al., 2020).

MiRNA/mRNA isolation and reverse transcription

According to the manufacturer’s instructions, TRI-
zol reagent (Invitrogen) was used to isolate total RNA 
from the intestinal tissues of the mice. Total RNA (2 

µg) was used to generate cDNA by utilizing the Prime 
Script RT reagent kit (Takara, Tokyo, Japan).

qRT-PCR

QRT-PCR was undertaken by using SYBR Premix 
Ex Taq II (Perfect Real Time) (Takara, Tokyo, Japan). 
The gene-specific primers were purchased from Ap-
plied Biosystems (Foster City, CA, USA) with follow-
ing sequences: U6: 5’-CTCGCTTCGGCAGCACA-3’ 
and 5’-AACGCTTCACGAATTTGCGT-3’, miRNA-
301a: 5’-GGCAGTGCAATAGTATTGT-3’ and 5’-TG-
GTGTCGTGGAGTCG-3’. U6 was used as an internal 
control for miR-301a expression. All experiments were 
in triplicates.

Figure 1. Volcanic map of differentially expressed miRNAs (or-
ange represents upregulated miRNAs, blue represents downreg-
ulated miRNAs, and black represents miRNAs without a signifi-
cant difference in expression).

Figure 2. Volcanic map of differentially expressed mRNAs (or-
ange represents upregulated mRNAs, blue represents downreg-
ulated mRNAs, and black represents miRNAs without a signifi-
cant difference in expression).

https://cytoscape.org/release_notes_3_7_2.html
https://geneontology.org/docs/go-enrichment-analysis/
https://geneontology.org/docs/go-enrichment-analysis/
https://www.genome.jp/kegg/pathway.html
https://www.genome.jp/kegg/pathway.html


Vol. 70       907miRNA-301a Promoted necrotizing enterocolitis

ELISA

Serum was taken from all groups of mice. Paired ELI-
SA kits for IL-8 and TNF-α (all from Enzyme Linked 
Biotechnology Co., Ltd., Shanghai, China) were used to 
evaluate the concentrations of IL-8 and TNF-α in the 
serum of the mice from each group. The optical density 
(OD) values of each well were recorded at 450 nm by a 
microplate reader.

Statistical analysis

Data were analysed by using SPSS 25.0 statistical soft-
ware and expressed as mean ± standard deviation. The 

differences were considered to be statistically significant 
at p<0.05.

RESULTS

Differentially expressed miRNAs and mRNAs

After processing the dataset, a total of 222 differen-
tial miRNAs were screened, of which 172 miRNAs were 
highly expressed and 50 miRNAs were lowly expressed. 
Similarly, we obtained 2584 differential mRNAs, of 
which 1155 mRNAs were up-regulated and 1429 mR-

Figure 3. The miRNA-mRNA regulatory network (ellipses represent mRNAs, squares represent miRNAs, orange represents upregu-
lated expression, blue represents downregulated expression, and connected lines represent targeted relationships).

Figure 4. GO enrichment analysis of differentially expressed mRNAs.
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NAs were down-regulated. The volcanoes of the differ-
ential miRNAs and mRNAs were subsequently mapped 
using R software (Figs 1 and 2).

Construction of miRNA-mRNA network and functional 
enrichment analysis

The FunRich (3.1.3) was used to predict the target 
genes of 222 differential miRNAs and a total of 2908 
target genes were identified. The miRNA-mRNA regula-
tory network was then mapped using Cytoscape software 
(Fig. 3). The regulatory network showed that miRNA-
301a regulated a greater number of mRNAs. We per-
formed GO and KEGG enrichment analysis on 2584 
different mRNAs using R language with p<0.05 and 
q<0.05 as screening conditions (Figs 4 and 5).

miRNA-301a antagonist reduced histological damage in 
NEC mice

We successfully established the NEC model us-
ing a previously published protocol (Nolan et al., 2021) 
(Fig. 6A). During the experiments, two mice died both 
in the control and in NEC+anti-miRNA-301a groups, 
while three mice died in the NEC group. The difference 
in mortality among the three groups was not statistically 
significant (p>0.05). At the end of the experiments, the 
intestinal tissues of the mice in the NEC group showed 
a bluish-black colour compared to those of the mice in 
the control group. However, after treatment with the 
miRNA-301a antagonist, the degree of intestinal tissue 
necrosis in mice was significantly reduced (Fig. 6B).

The average histological score of the mice in the NEC 
group was 3.12±0.72, while the scores of the control 

Figure 5. KEGG enrichment analysis of differentially expressed mRNAs.

Figure 6. Inhibition of miRNA-301a ameliorated histological damage of NEC mice. 
(A) Illustration of the delivery of NEC formulae to neonatal mice. (B) Representative gastrointestinal images of the different groups 
of mice. (C) H&E staining was used to evaluate the severity of tissue damage in different groups of mice (n=5) Mann-Whitney U-test. 
***p<0.001. (D) Representative histological images of the terminal ileum in different groups of mice. Scale bar: 10 µm.
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group were typically <2 points (p<0.05). After treatment 
with miRNA-301a antagonist, the average histological 
score was 1.78±0.60, and the inflammation grade was 
significantly reduced (p<0.05; Fig. 6C, D).

miRNA-301a antagonist reduced serum levels of IL-8 
and TNF-α in NEC mice

The serum level of IL-8 was 13.95±1.05 pg/ml in the 
control group and 59.93±6.41 pg/ml in the NEC group 
(p<0.05). However, posttreatment with the miRNA-
301a antagonist reduced IL-8 level to 26.23±1.22 pg/ml 
(p<0.05 compared to the NEC group; Fig. 7A).

Furthermore, the serum level of TNF-α was 
94.16±3.92 and 197.04±16.19 in the control and NEC 
groups (p<0.05), respectively, and was 111.51±8.62 in 
mice that received miRNA-301a antagonist treatment 
(p<0.05 compared to the NEC group; Fig. 7B).

In addition, qRT-PCR showed that the expression lev-
el of miRNA-301a increased in the intestinal tissues of 
the NEC group (p<0.05 compared to the control group), 
but decreased in NEC mice treated with miRNA-
301a antagonist (p<0.05 compared to the NEC group; 
Fig. 7C).

DISCUSSION

NEC is the main catastrophic cause of death in sur-
viving premature infants. The pathogenesis of NEC 
as well as potential strategies for NEC prevention and 
treatment remain elusive, although it is evident that the 
inflammatory cascade plays an important role in the de-
velopment of NEC (Niño et al., 2016; Liu et al., 2019). 
In this study, we successfully established an NEC mouse 
model to explore the role of miRNA-301a in the patho-
genesis of NEC, and we proved the association between 
high expression of miRNA-301a and increased severity 
of NEC. In addition, our study revealed that high ex-
pression of miRNA-301a promoted the release of in-
flammatory factors IL-8 and TNF-α.

Numerous studies have proven that non-encoding 
RNAs regulate inflammation through a variety of path-
ways (Zhou et al., 2021; Yang & Ge, 2018). miRNA-
301a was highly expressed in peripheral blood mononu-
clear cells and inflamed mucosa of patients with active 
IBD and may promote TNF-α production by targeting 
SNIP1, ultimately facilitating the pathogenesis of IBD 
(He et al., 2016). miRNA-301a also inhibited the ex-
pression of BTG1, thereby reducing the integrity of the 
epithelium, promoting inflammation of the mouse colon 
and stimulating tumorigenesis (He et al., 2017). In this 

study we found that the pathological inflammation of 
the mouse intestinal tissue was reduced after we treated 
NEC mice with miRNA-301a antagonist, indicating that 
miRNA-301a plays an important role in the inflamma-
tory progression of NEC.

For newborns with NEC, IL-8, IL-10, and TNF-α 
can be used as biomarkers for early diagnosis (Seliga-
Siwecka & Kornacka, 2013). Combined analysis of IFN-
γ-inducible protein 10 and TNF-α showed a specificity 
of 80% and a sensitivity of 90% (Weissenbacher et al., 
2013). In this study, we focused on TNF-α and IL-8, 
and found that the serum levels of inflammatory cy-
tokines IL-8 and TNF-α were reduced after we treated 
NEC mice with miRNA-301a antagonist, suggesting that 
miRNA-301a may be a potential therapeutic target for 
NEC. In future studies, we need to examine other pro-
inflammatory interleukins such as IL-1, IL-6 and IL-10 
(Fu et al., 2023).

Studies have shown that microRNAs play an impor-
tant role in energy metabolism, immune regulation, ho-
meostasis, cell apoptosis, cell proliferation and differen-
tiation (Qi et al., 2022; Zhong et al., 2018; Zhang et al., 
2022; Liu et al., 2022; Dai et al., 2022; Chen et al., 2021). 
Interference with these key cell functions can lead to an 
increase in apoptosis and inflammation and a decrease in 
repair capacity, which may be crucial in the pathogenesis 
of NEC (Premkumar et al., 2014; Ng et al., 2015). To 
further explore the potential mechanism of miRNA-301a 
in promoting NEC, we need to identify target genes of 
miRNA-301a that medicate the effects of miRNA-301a 
on cell proliferation, apoptosis, inflammation, mentalism 
and autophagy involved in the progression of NEC.

In conclusion, although further studies are necessary 
to confirm the role of miRNA-301a in MEC, our results 
provide the first evidence that miRNA-301a plays an 
important role in the pathogenesis of NEC by promot-
ing inflammation, and is a potential therapeutic target of 
NEC.
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Figure 7. Inhibition of miRNA-301a reduced serum levels of inflammatory factors in NEC mice (n=5) 
(A) Serum levels of IL-8 in different groups of mice. (B) Serum levels of TNF-α in different groups of mice. (C) Expression levels of miRNA-
301a in intestinal tissues of different groups of mice. All experiments were in triplicates. ***p<0.001.
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