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Purpose: Osteosarcoma (OS) is one of the most com-
mon primary bone tumors. Direct pathogenesis remains 
unknown, however, genes’ mutations are proven to par-
ticipate in the process. This study aimed to examine the 
most frequently mutated genes in OS to appoint candi-
dates for the cancer markers. Methods: Using the COS-
MIC Catalogue twenty the most frequently mutated genes 
were selected leading to an up-to-date genetic OS land-
scape summary. The  genes can be classified into four 
categories: suppressor genes (TP53, RB1, NCOR1, SMAD2, 
NF1, TSC2, KMT2C), proto-oncogenes (GNAS, BRAF, MLLT3), 
epigenetic and post-translational modification-related 
genes (SMARCA4, ARID1A, ATRX, BCOR, H3F3A) and cell 
growth and survival regulating genes (EGFR, CAMTA1, 
LRP1B, PDE4DIP, MED12). Results and conclusions: Their 
role in cancerogenesis was confirmed by the analysis of 
available articles published previously. The results of the 
study indicate that examination of selected genes’ muta-
tions might help to identify patients’ predisposition to OS 
development, as well as monitor the disease progression, 
and establish prognosis. However, to fully understand the 
pathogenesis of OS further studies are required.
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Abbreviations: ALP, alkaline phosphatase; ANPEP, alanyl aminopepti-
dase; AP-1, activator protein 1; ARID1A, AT-rich interactive domain-
containing protein 1A; ATRX, alpha thalassemia/mental retardation 
syndrome X-linked; BCOR, BCL6 Corepressor; BRAF, serine/threo-
nine kinase; c-Myc, cellular myelocytomatosis oncogene; CAMTA1, 
calmodulin binding transcription activator 1; CD133, CD133 an-
tigen; COSMIC, Catalogue Of Somatic Mutations In Cancer; CRP, 
C-reactive protein; EGFR, epidermal growth factor receptor; EMT, 
epithelial-mesenchymal transition; FLNA, filamin A; FUCA1, alpha-
L-fucosidase 1; GNAS, guanine nucleotide binding protein alpha 
stimulating; H3F3A, H3 histone family 3A; HER-4, human epidermal 
growth factor receptor 4; ICB, immune checkpoint blockade; ICIs, 
immune checkpoint inhibitors; KTM2C, lysine methyltransferase 2C; 
LAMA3, laminin subunit alpha 3; LGALS1, galectin 1; LRP1B gene, 
low density lipoprotein receptor-related protein 1B; MATN3, matrilin 
3; MED12, mediator complex subunit 12; miRNA , microRNA; MLLT3, 
MLLT3 super elongation complex subunit 3; MMGL, myomegalin-
like; MSCs, mesenchymal stem cells; NANOG, homeobox protein NA-
NOG; NCOR1, nuclear receptor corepressor 1; NF1, neurofibromin 1; 
OS, Osteosarcoma; PDE4DIP, phospodiestrase 4D-interacting protein; 
Rb, retinoblastoma protein; RB1, RB transcriptional corepressor 1; 
SEC, super elongation complex; SGCG, sarcoglycan gamma; SMAD2, 
SMAD family member 2; SMARCA4, SWI/SNF-related, matrix-associ-
ated, actin-dependant regulator of chromatin, subfamily a, member 
4; SOX4, SRY-box transcription factor 4; TCGA, The Cancer Genome 
Atlas; TICs, tumor-initiating cells; TP53, tumor protein p53; TSC, tu-
berous sclerosis complex; TSC2, TSC complex subunit 2; TWIST, Twist 
Family BHLH Transcription Factor; VEGFA,Vascular endothelial growth 
factor A; WNT5A, Wnt Family Member 5A

INTRODUCTION

Osteosarcoma (OS) is one of the most common pri-
mary bone tumors. It occurs intraosseous, mainly in the 
metaphyseal region of the long bones. OS is inflicting 
an accelerated osteoid matrix production, which is con-
nected to being developed at sites where bone grows ex-
peditiously. Current data prove that OS has two main 
peaks of incidence: in childhood and adolescence. OS is 
the third most common type of tumor affecting young 
people, with the highest incidents in the early twenties 
(Wu & Livingston, 2020; Sun et al., 2020; Misaghi et al., 
2018; Czarnecka et al., 2020).

Osteosarcoma is divided into several subtypes (Fig. 1). 
It can be categorized depending on the region of bone 
it affects (the surface and central part of the bone, and 
within the medulla). The staging scheme divides OS into 
two classes depending on the grade of the tumor (low or 
high), as well as the localization of the compartment (ex-
tra- or intra-compartmental). Additionally, it is classified 
considering the metastatic level of the tumor. The most 
common classification groups OS as osteoblastic, chon-
droblastic, fibroblastic, and small cell subtypes. Among 
mention above types of ostesarcoma, the most often di-
agnosed one is a high-grade tumor, occurring extra-corti-
cally (Misaghi et al., 2018).

Even though the exact mechanisms responsible for 
OS pathogenesis are not known, it is confirmed that ge-
netics play a role in the tumor origin. The most com-
mon characteristic of OS includes genome disorganiza-
tion, together with alterations of tumor suppressor and 
DNA repair, as well as changes in cell cycle aneuploids 
with chromosomal alterations (de Azevedo et al., 2020). 

Figure 1. The most common classification of osteosarcoma sub-
types, depending on the predominant type of cells affected by 
OS.
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It was proved that OS can be developed as a conse-
quence of alteration in tumor suppressor genes, includ-
ing TP53 and Rb1, during hereditary disorders such as 
Li-Fraumeni cancer family syndrome and retinoblastoma 
(Porter et al., 1992; Fletcher & Unni, 2002; Misaghi et al., 
2018; Sun et al., 2020). However, also other genes, such 
as transcription factors, and tumor suppressor genes, in-
cluding CAMTA1, or KMT2C might participate in oste-
osarcoma development (He et al., 2021; Chen et al., 2016; 
Chiappetta et al., 2019).

Currently, there are no laboratory tests or specific bio-
markers to diagnose osteosarcoma (Misaghi et al., 2018). 
Even though there are some molecules expressed in OS 
that are proposed as their potential markers. The most 
promising one appears to be alkaline phosphatase (ALP), 
which increased serum level and seems to correlate posi-
tively with tumor volume (Limmahakhun et al., 2011). Addi-
tionally, C-reactive protein (CRP), Cathepsin D, osteocalcin, 
SATB2, and aspartic endoprotease can help distinguish OS  
(Misaghi et al., 2018; Czarnecka et al., 2020; Agustina et al., 
2018; Machado et al., 2016; Tallegas et al., 2022).

In addition to proteins, microRNA expression also 
seems to be valuable in the diagnosis of osteosarcomas. 
Overexpression of miR-421 and miR-191 proves to be 
linked with proliferation, migration, and malignant char-
acter of the tumors. Their levels in the serum of OS 
patients were higher compared to samples from healthy 
volunteers (Czarnecka et al., 2020).

Moreover, the presence of tumor-initiating cells (TICs) 
may help in OS diagnostics. TICs expressing markers of 
stem cell phenotype, such as NANOG or SOX4 were 
observed in both primary and metastatic tumor tissue 
(Yan et al., 2016). These proteins, together with CD133+, 
which is a distinctive marker of TICs observed in osteo-
sarcoma cell lines (Czarnecka et al., 2020). It has been 
proved that the expression of CD133 in OS patients is 
related to distant metastasis and poor prognosis.  making 
this a tumor marker (Xie et al., 2018).

Finally, the prevalence of mesenchymal stem cells 
(MSCs) connected with OS progression is proposed 
to be the tumor marker. Changes in the expression of 
c-Myc, Rb, AP-1 or TWIST were shown to contribute 
to the transformation of MSCs into osteosarcoma tumor 
cells (Yang et al., 2020). Most sarcomas characterize a 
permanent mesenchymal state. However, their phenotype 
can change by factors regulating epithelial-mesenchy-
mal transition – EMT. These factors have been shown 
to be highly correlated with the invasiveness and higher 
risk of metastasis in malignant OS (Wu et al., 2019; Yu, 
Yustein & Xu, 2021). An EMT-related genes’ panel (in-
cluding LAMA3, LGALS1, SGCG, VEGFA, WNT5A, 
MATN3, ANPEP, FUCA1, and FLNA) was used as a 
predictive marker in a multi-cohort study of OS. The 
panel proved to be a reliable tool for estimating the 
overall survival of OS patients. Moreover, it was pro-
posed as a selection method for patients with metastases 
for personalized treatment (Yiqi et al., 2020).

Even though numerous studies describe molecules, 
whose expression may characterize osteosarcomas, all 
pointed proteins and/or miRNA are not specific to OS. 
Thus, further studies are needed to establish biomarkers 
helping to diagnose and treat OS. 

The present study aims to provide a comprehensive, 
up-to-date study of genes the most frequently mutated in 
osteosarcoma using the COSMIC Catalogue. Such genes 
would become candidates for OS markers.

COSMIC, the Catalogue Of Somatic Mutations In Can-
cer (https://cancer.sanger.ac.uk) is a database providing 
tools to explore somatic mutations and their correlation 

with human cancers. The catalogue is the collection of 
somatic mutations. The data used to build this catalogue 
derives strictly from the scientific literature. COSMIC ad-
ditionally provides information about patients’ genetic pre-
dispositions and environmental factors participating in the 
process of cancerogenesis (Tate et al., 2019). 

MATERIALS AND METHODS

To identify the most common somatic mutations occur-
ring in osteosarcoma patients, the COSMIC Cancer Brows-
er tool (https://cancer.sanger.ac.uk/cosmic/browse/tissue) 
was used. The catalogue provides information about 282 
osteosarcoma samples (classified into 9 histological sub-
types). The biological relevance of the 20 most frequently 
mutated genes pointed out by the COSMIC Cancer Brows-
er was investigated by the analysis of publications available 
on PubMed (https://pubmed.ncbi.nlm.nih.gov/). To search 
for the publications, specific keywords, such as: select-
ed genes’ name, osteosarcoma, cancer, and mutation were 
used. For each gene research was divided into two keyword 
panels – first: selected genes’ name, cancer, mutation; sec-
ond: selected genes’ name, osteosarcoma, mutation.

RESULTS AND DISCUSSION

Genes the most frequently mutated in OS

The analysis of the COSMIC Catalogue provided a 
list of genes in which somatic mutation may participate 
in osteosarcoma development. Out of 18,309 entries of 
genes, the top 20 genes, based on the frequency of their 

Table 1. The frequency of gene mutation in OS samples in the 
COSMIC Catalogue

Gene
Number of OS samples 
available in COSMIC 
catalogue

Number of mutated sam-
ples and % of frequency

TP53 371 91 (25%)

RB1 285 22 (8%)

ATRX 212 16 (8%)

KMT2C 215 13 (6%)

LRP1B 136 8 (6%)

CAMTA1 134 7 (5%)

NCOR1 208 9 (4%)

MLLT3 134 6 (4%)

PDE4DIP 134 6 (4%)

GNAS 352 9 (3%)

SMARCA4 211 6 (3%)

ARID1A 210 6 (3%)

H3F3A 453 11 (2%)

EGFR 280 5 (2%)

BRAF 257 6 (2%)

SMAD2 243 5 (2%)

NF1 216 5 (2%)

MED12 210 5 (2%)

TSC2 210 5 (2%)

BCOR 209 5 (2%)

https://cancer.sanger.ac.uk
https://cancer.sanger.ac.uk/cosmic/browse/tissue
https://pubmed.ncbi.nlm.nih.gov/
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mutation were selected. They are shown in Table 1 and 
shown in Fig. 2. 

All these genes are directly or indirectly involved in 
oncogenesis (Table 2). Seven out of these 20 genes – 
TP53, RB1, NCOR1, SMAD2, NF1, TSC2, KMT2C are 

known to be tumor suppressor genes. Thus, their mu-
tations lead to the expression of malfunctioning protein 
products and strictly correlate with tumourigenesis. The 
following three genes: GNAS, BRAF, and MLLT3 are 
protooncogenes. Other genes – SMARCA4, ARID1A, 

Figure 2. The top 20 most frequently mutated genes in OS according to COSMIC Catalogue

Table 2. Genes the most frequently mutated in osteosarcomas and their function

Gene Function References

TP53 tumor suppression (Synoradzki et al., 2021)

RB1 tumor suppression (Li et al., 2022)

ATRX epigenetics and post-translational modifi-
cations (He et al., 2015)

KMT2C tumor suppression (Gala et al., 2018; Lian et al., 2022; Liu et al., 2021)

LRP1B cell growth, metabolism and survival (Wang & Xiong, 2021)

CAMTA1 cell growth, metabolism and survival (Lu et al., 2018)

NCOR1 tumor suppression (Tang et al., 2020)

MLLT3 protooncogene (Sun et al., 2017)

PDE4DIP cell growth, metabolism and survival (Soejima et al., 2001; Lehnart et al., 2005)

GNAS protooncogene (Nomura et al., 2014; Zauber, Marotta & Sabbath-Solitare, 2016; 
Patra et al., 2018; Afolabi et al., 2022)

SMARCA4 epigenetics and post-translational modifi-
cations (Xu et al., 2021; Jelinic et al., 2014)

ARID1A epigenetics and post-translational modifi-
cations (Xu et al., 2019)

H3F3A post-translational modifications of histone 
H3.3 (Sturm et al., 2012; Park et al., 2016)

EGFR cell growth, metabolism and survival (Wang et al., 2004)

BRAF protooncogene (Śmiech et al., 2020)

SMAD2 tumor suppression (Piek, Heldin & Ten Dijke, 1999; Pasche, 2001)

NF1 tumor suppression (Trovó-Marqui & Tajara, 2006)

MED12 cell growth, metabolism and survival (Ding et al., 2008)

TSC2 tumor suppression (Inoki et al., 2002)

BCOR epigenetics and post-translational modifi-
cations  (Huynh et al., 2000)
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ATRX, BCOR, and H3F3A are related to the epigen-
etic status of gene expression or posttranslational his-
tone modifications. Finally, EGFR, CAMTA1, LRP1B, 
PDE4DIP, and MED12 are associated with cell growth, 
metabolism, and survival. 

Molecular basis of OS

Genome destabilization, aneuploids with chromosomal 
changes, dysregulation of cell cycle and tumor suppres-
sor genes, as well as a lack of DNA repair are some of 
the most prevalent characteristics of OS (de Azevedo et 
al., 2020). Epigenetic changes are also recognized as risk 
factors for OS (Sharma, Kelly & Jones, 2009). Still, the 
pathogenesis of OS is complex and poorly understood. 
Thus, the identification of additional genes involved in 
oncogenesis may lead to advances in understanding OS 
biology, as well as shortening the time needed to estab-
lish diagnosis and introduce proper treatment.

The results of the COSMIC Catalogue analysis allowed 
distinguishing 20 genes the most frequently mutated in 
cancer. All recognized genes (Table 2) are known to be 
key regulators of vital cellular processes such as DNA 
repair, cell proliferation and differentiation. Thus, their 
mutations might lead to cancer development.  

The most frequently mutated genes and their possible 
role in OS biology 

Among the genes examined during the analysis of the 
COSMIC Catalogue, the most frequently mutated gene 
in OS was TP53. Its mutation characterized 25% of 
samples available in the database. TP53 encodes the P53 
protein, which is an essential transcription factor with a 
tumor suppressor function. It stimulates several process-
es that result in cell cycle arrest, DNA repair, alterations 
in metabolism in response to cellular stress, apoptosis, 
and cell senescence. Moreover, it plays an important role 
in ontogenesis, myogenesis, and angiogenesis (Synoradzki 
et al., 2021). Thus, mutated TP53 appears to be essential 
for cancer development and its progression. Mutations 
in TP53 are known to increase protein instability, which 
affects clinical characteristics of osteosarcoma, such as 
metastatic potential, tumor type, and grade as well as its 
aggressiveness. According to Chen et al. TP53 mutations 
are a reliable predictive indicator for osteosarcoma pa-
tient survival (Chen et al., 2016).

Another gene commonly mutated in OS is Retinoblas-
toma transcriptional corepressor 1 gene – RB1. Its mu-
tations were observed in 8% of samples available in the 
COSMIC catalogue. Between 50% and 70% of osteosar-
coma cases exhibit mutations in RB1 (Wu & Livingston, 
2020). RB1 encodes retinoblastoma protein controlling 
the transition from the G1 to S phase. This makes it a 
crucial regulator of cell cycle progression. It is suggested 
that during OS oncogenesis, alterations of RB1 may cor-
relate with TP53 inactivation (Wu & Livingston, 2020; 
Li et al., 2022). Indeed, using mice models it was proved 
that deletion of RB1 leads to osteosarcomas develop-
ment. Osteoblast development and mineralization as well 
as an increase in the expression of osteogenic markers 
were positively impacted by the gene deletion (Li et al., 
2022).

Yet another gene mutated in 8% of OS is ATRX – 
alpha thalassemia/mental retardation syndrome X-linked. 
The gene encodes the protein that plays a role in chro-
matin remodeling and DNA repair. Loss of ATRX func-
tion has been linked to the accumulation of repetitive 
DNA sequences and alterations in the epigenetic regula-
tion of the gene expression, which may contribute to the 

development and progression of tumor (He et al., 2015). 
Mutations in ATRX have been observed in a variety 
of cancer types (Haase et al., 2018). In osteosarcoma, 
ATRX dysfunction was linked with chromosomal in-
stability, which contributes the tumor development. The 
gene’s mutations were also associated with poor progno-
sis and resistance to chemotherapy (Masliah-Planchon et 
al., 2018). Thus, ATRX is pointed out as a promising 
biomarker of osteosarcoma.

6% of OS samples in the COSMIC catalogue mani-
fested mutation of the KTM2C gene. KTM2C has been 
shown to act as a tumor suppressor. Its expression in 
OS has been shown to be downregulated, like in a va-
riety of other human cancers, including breast and pros-
tate cancer (Gala et al., 2018; Lian et al., 2022; Liu et al., 
2021). Loss of KTM2C expression is associated with 
poor prognosis and resistance to chemotherapy (Lian et 
al., 2022; Liu et al., 2021). What is more, KTM2C has 
been shown to regulate the other tumor suppressor 
genes, such as TP53 and p16INK4a. By removing methyl 
groups from histones, KTM2C also activates the expres-
sion of oncogenes, such as MYC (Liu et al., 2021; Lian 
et al., 2022; Gala et al., 2018). All these data demonstrate 
that the KTM2C gene can play an important role in OS 
development.

6% of available OS samples of the COSMIC cata-
logue were mutated in the LRP1B gene – Low Density 
Lipoprotein Receptor-Related Protein 1B that encodes 
cell surface receptor for LDL. LRP1B has been previ-
ously shown to play a role in tumor growth and progres-
sion. Additionally, it regulates angiogenesis in some of 
the cancer types, such as non-small cell lung cancer, re-
nal cell cancer, and neuroglioma (Wang & Xiong, 2021). 
The gene overexpression observed in various cancers is 
linked to poor prognosis and decreased patient survival 
(Brown et al., 2021; Príncipe et al., 2021; Wang & Xiong, 
2021). LRP1B is associated with the occurrence of os-
teosarcoma and its overexpression correlates with poor 
prognosis and decreased patient survival. Therefore the 
gene might be one relevant factor helping in OS diagno-
sis (Xu et al., 2021). 

A significant role in tumorigenesis and tumor progres-
sion is also played by the CAMTA1 gene encoding a 
transcription factor – Calmodulin Binding Transcription 
Activator 1 (He et al., 2021). The gene down-expression 
correlates with chemoresistance (Pan et al., 2022). It has 
been shown that the expression of long noncoding RNA 
CAMTA1 (lncCAMTA1) in breast cancer affects cells vi-
ability and promotes their migratory state. Knock-down 
of lncCAMTA1 leads to cancer cell apoptosis (Lu et al., 
2018). CAMTA1 mutations were observed in 5% of OS 
COSMIC samples. Even though there is a lack of in-
formation about the gene significance for osteosarcoma, 
still in Epithelioid hemangioendothelioma, that can arise 
from soft tissues and bones, CAMTA1 was proposed 
to be an immunohistochemical marker (Anderson & Jo, 
2021).

Yet another gene shown to play a role in tumor de-
velopment and its progression is NCOR1 (Nuclear Re-
ceptor Corepressor 1) gene. COSMIC catalogue analy-
sis showed that as many as 4% of OS samples showed 
NCOR1 mutation. The gene encodes a corepressor in-
volved in the regulation of gene expression (Tang et al., 
2020). NCOR1 was observed to be frequently upregulat-
ed in breast cancer, and its high expression is associated 
with good prognosis and better patient survival (Noble-
jas-López et al., 2018). Interestingly, in bladder cancer, 
NCOR1 strongly correlated with immunogenicity, and its 
mutations were shown to cause activation of anti-tumor 
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immunity, as well as overexpression of immune-related 
genes (Lin et al., 2021). According to Luo et al. NCOR is 
widely amplificated in osteosarcoma, as it might partici-
pate in tumor growth as a regulator of other gene tran-
scription (Luo et al., 2019).  

Four percentage of OS samples of the COSMIC cat-
alogue showed mutations of the MLLT3 gene. MLLT3 
protein is part of a super elongation complex (SEC), 
which is needed to increase the catalytic function of 
RNA polymerase II (Calvanese et al., 2019). The knock-
out of the MLLT3 gene can lead to decreased prolifera-
tion of osteosarcoma cell lines, associated with the JNK 
signaling pathway. Thus, MLLT3 can be an oncogene 
candidate involved in osteosarcomas development (Sun 
et al., 2017).

As much as 4% of samples deposited in the COS-
MIC catalogue were characterized by PDE4DIP gene 
mutations. Even though there is no information about 
the gene significance in osteosarcomas, still, PDE4DIP 
protein, also known as MMGL (myomegalin-like) protein 
is involved in several intracellular metabolic pathways, 
which may control OS biology (Soejima et al., 2001; 
Lehnart et al., 2005).

Three percentage of OS samples carried a mutation 
of GNAS (Guanine Nucleotide Binding Protein, Alpha 
Stimulating). The gene encodes a signaling molecule in-
volved in many cellular processes involving cAMP sig-
naling. It has been shown to play a role in tumorigenesis 
(Nomura et al., 2014; Zauber, Marotta & Sabbath-Soli-
tare, 2016; Patra et al., 2018; Afolabi et al., 2022). GNAS 
mutations were observed in various cancers, such as co-
lon, pancreas, and gastrin adenocarcinoma as well as in 
fibrous dysplasia, which is known to have the potential 
to form malignancies such as osteosarcoma (Sugiura et 
al., 2018).

Three percentage of samples deposited in the COS-
MIC catalogue manifested mutations of the SMARCA4 
gene. SMARCA4 encodes the catalytic subunit of SWI/
SNF complexes, which is associated with chromatin re-
modeling and making genes accessible for transcription-
al factors. Unfortunately, there is a lack of information 
about the significance of gene alterations in osteosarco-
mas.

Also, the ARID1A gene product (AT-rich interactive 
domain-containing protein 1A) is a part of the SWI/
SFI complex, associated with chromatin remodeling 
(Xu et al., 2019). ARID1A mutations were observed in 
many cancers before (Jones et al., 2010). Recent studies 
show that in osteosarcomas the expression of ARID1A 
is down-regulated compared to non-tumor tissues (Xu et 
al., 2019). This can be correlated with the gene muta-
tions measured in 3% of OS samples of the COSMIC 
catalogue.

Yet another mutated gene affecting the structure of 
chromatin and contributing to tumorigenesis is H3F3A 
(Sturm et al., 2012; Park et al., 2016). H3F3A overex-
pression has been shown to correlate with aggressive 
phenotype and chemoresistance leading to lower sur-
vival rates and relapse in lung cancer patients (Park et 
al., 2016). COSMIC catalogue analysis showed that 2% 
of OS samples are mutated in H3F3A. This data finds 
approval in Koelsche et al. study showing hotspot mu-
tations in H3F3A in six osteosarcoma cases analysed by 
the authors. Observed alternations were correlated with 
age and increased the incidence of osteosarcoma in pa-
tients over the age of 30 (Koelsche et al., 2017). 

Two percentage of the samples of the COSMIC cata-
logue were carrying mutations in the BCOR gene. BCOR 
protein is involved in the process of deacetylation of 

histones and when over-expressed inhibits BCL-6 tumor 
suppressor  (Huynh et al., 2000). Mutations in BCOR are 
associated with many types of cancer, such as clear cell 
sarcoma of the kidney, endometrial stromal sarcoma, or 
small round blue cell sarcomas (Astolfi et al., 2019; Ue-
no-Yokohata et al., 2015; Marinõ-Enriquez et al., 2018; 
Sbaraglia et al., 2020). 

Among samples deposited in the COSMIC cata-
logue, approximately 2% carry mutations in the MED12 
gene. MED12 is part of a larger, multiprotein complex 
that mediates polymerase II RNA during the process 
of transcription (Ding et al., 2008). MED12 is associat-
ed with 70% of uterine leiomyomas and fibroepithelial 
tumors of the breast (Croce & Chibon, 2015; Lerwill 
et al., 2022). As for now, only two clinical case reports 
described MED12 mutations in osteosarcomas. Le and 
others (Le et al., 2021) showed that the patient with 
MED12-mutated high-grade uterine sarcoma developed 
osteosarcoma with the same L36R missense mutation. 
Another team described MED12 mutation in osteosar-
coma which further led to the development of breast 
malignant phyllodes tumor (Tokoyoda et al., 2018). More 
study is needed to assess the link between MED12 mu-
tations and the occurrence of osteosarcoma, especially 
since according to The Cancer Genome Atlas (TCGA) 
data, mutations in MED12 can be biomarkers helping to 
select patients for the therapy with immune checkpoint 
inhibitors (ICIs) (Zhou et al., 2022).

Two percentage of OS samples from the COSMIC 
catalogue displayed changes in the EGFR gene encod-
ing receptor for the epidermal growth factor (EGFR). 
The receptor is known for its crucial role in the signaling 
pathway responsible for cell proliferation, differentiation, 
and/or survival (Wang et al., 2004). Mutations of EGFR 
in a variety of malignancies are well documented. Most 
frequent is the gene’s amplification leading to EGFR 
overexpression increasing cellular signaling (Sigismund, 
Avanzato & Lanzetti, 2018; Cheng et al., 2021). The gene 
importance for OS has been already documented. Sheng-
Lin and others (Sheng-Lin et. al., ????) reported that high 
expression of EGFR together with HER-4 (human epi-
dermal growth factor receptor 4) was associated with 
distant metastasis and the level of EGFR expression was 
proposed to be a potential prognostic biomarker of OS 
(Wang et al., 2018).

Among OS samples deposited in the COSMIC cat-
alogue, 2% manifested mutations of the SMAD2 gene. 
This low number of samples can indicate that the 
gene mutations are not osteosarcoma specific. Howev-
er, is worth mentioning that SMAD2, as a part of the 
TGF-beta superfamily, plays an important role in cell 
signaling, proliferation, and differentiation (Piek et al., 
1999) and may act as an oncosuppressor (Piek et al., 
1999; Pasche, 2001). Moreover, it has been shown that 
there are statistically significant changes in SMAD2 ex-
pression in OS compared to healthy tissue. The cor-
relation between alterations of Smad signaling, the high 
proliferation rate, and the invasive phenotype of osteo-
sarcoma cells was observed in OS with Serine/threonine 
kinase 39 (STK39) knockdown (Won et al., 2010; Yang et 
al., 2013; Huang et al., 2017).

Another gene selected during our study was the NF1 
gene. According to the data from the COSMIC cata-
logue 2% of OS samples were carrying the gene’s muta-
tions. The product of NF1 is neurofibromin 1 – a cyto-
plasmic protein expressed in neurons, Schwann cells, and 
leukocytes. The protein is a part of the RAS/MAPK sig-
naling pathway controlling cell proliferation (Huang et al., 
2017). It is suggested that NF1 can act also as an oncos-
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uppressor. Although the NF1 gene is associated most-
ly with neural malignancies, its mutations are observed 
in many cancers, e.g. lung cancers or melanomas (Tro-
vó-Marqui & Tajara, 2006). Further studies are needed 
to prove NF1 role in OS development.

An additional gene involved in the inhibition of cell 
proliferation is the tumor-suppressor gene TSC2 (Inoki 
et al., 2002). The gene’s mutations were described in tu-
berous sclerosis complex (TSC) and non-small cell lung 
cancer. It was proved that patients with TSC1/TSC2 loss 
can benefit from target therapy including treatment with 
immune checkpoint blockade (ICB) (Huang et al., 2022). 
Kuroda et al. reported a clinical case of a young patient 
with tuberous sclerosis complex (TSC) who developed 
osteosarcoma. Analysis of the tumor sample showed ad-
ditional mutations in TP53 as well as TSC2 genes (Kuro-
da et al., 2021). This observation is in agreement with 
COSMIC catalogue data showing that approximately 2% 
of OS samples were characterized by mutated TSC2. 

Two percentage of OS samples were also character-
ized by mutated proto-oncogene BRAF. BRAF activates 
signaling pathways involved in the cell cycle, including 
proliferation, differentiation, and cell death. The gene 
mutations may result in malignancies development. In 
fact, dysregulation of gene expression was observed in 
several cancers, including melanoma, colorectal cancer, 
and non-small cell lung cancer (Śmiech et al., 2020). Pig-
nochino et al. reported that in 4 of 30 osteosarcoma pa-
tients analysed in their study, BRAF gene mutation was 
confirmed (Pignochino et al., 2009). 

CONCLUSIONS

COSMIC catalogue analysis allows to identify genes 
that are the most frequently mutated in osteosarcoma. 
Since 20 of the selected genes have previously been 
shown to be involved in cancerogenesis, thus their mu-
tation might also play a role in OS development. How-
ever, to prove their clinical significance and the possi-
bility of using them as OS biomarkers further studies 
are needed. The results of such a study would help to 
identify patient predisposition to OS development, fol-
low cancer progression, and establish patients’ treatment 
and prognosis. 
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