Electronegativity and intrinsic disorder of preeclampsia-related proteins
Abstract
Preeclampsia, hemorrhage, and infection are the leading causes of maternal death in underdeveloped countries. Since several proteins associated with preeclampsia are known, we conducted a computational study in which evaluated the commonness and potential functionality of intrinsic disorder in these proteins and also made an attempt to characterize their origin. To this end, we used a several supervised techniques, as a Polarity Index Method (PIM), which evaluates the electronegativity of proteins from their sequence alone. Peculiarities of resulting polar profile of the group of preeclampsia-related proteins were then compared with profiles of a group of lipoproteins, antimicrobial peptides, angiogenesis-related proteins, and the intrinsically disorder proteins. Our results showed a high graphical correlation between preeclampsia proteins, lipoproteins, and the angiogenesis proteins. These results lead us to strongly assume that the preeclampsia proteins are lipoproteins. We also show that several preeclampsia-related proteins contain significant amounts of functional disorder.
References
Abel Dv, Abdul-Hamid O, Dijk Mv, Oudejans CB. (2012) Transcription factor STOX1A promotes mitotic entry by binding to the CCNB1 promotor. PloS One 7:e29769. DOI: 10.1371/journal.pone.0029769.
Alasztics B, Gullai N, Molvarec A, Rigó J Jr. (2014) The role of angiogenic factors in preeclampsia. Orv Hetil 155:1860-1866.
Altman D, Carroli G, Duley L, Farrell B, Moodley J, Neilson J, Smith D, Magpie Trial Collaboration Group. (2002) Do women with pre-eclampsia, and their babies, benefit from magnesium sulphate? The Magpie Trial: a randomised placebo-controlled trial. Lancet 359:1877-1890.
Apweiler R, Bairoch A, Wu CH, et al. (2004) UniProt: the Universal Protein knowledgebase. Nucleic Acids Research. 32:D115-D119.
Atkinson KR, Blumenstein M, Black MA, Wu SH, Kasabov N, Taylor RS, Cooper GJ, North RA; SCOPE Consortium. (2009) An altered pattern of circulating apolipoprotein E3 isoforms is implicated in preeclampsia. J Lipid Res 50:71-80.
B, Dosztanyi Z, Uversky VN, Obradovic Z, Kurgan L, et al. (2013) D(2)P(2): database of disordered protein predictions. Nucleic Acids Res 41:D508-D516.
Bellamy L, Casas JP, Hingorani AD, Williams DJ. Pre-eclampsia and risk of cardiovascular disease and cancer in later life: systematic review and meta-analysis. BMJ 335:974.
Berlow RB, Dyson HJ, Wright PE. (2015) Functional advantages of dynamic protein disorder. FEBS Lett 589(19 Pt A):2433-2440.
Brown MC, Best KE, Pearce MS, Waugh J, Robson SC, Bell R. (2013) Cardiovascular disease risk in women with pre-eclampsia: systematic review and meta-analysis. Eur J Epidemiol 28:1-19.
Buhimschi IA, Nayeri UA, Zhao G, Shook LL, Pensalfini A. et al. (2014) Protein misfolding, congophilia, oligomerization and defective amyloid processing in preeclampsia. Sci Trans Med 6: 245ra92 DOI: 10.1126/scitranslmed.3008808.
Buhimschi IA, Zhao G, Funai EF, Harris N, Sasson IE, Bernstein IM, Saade GR, Buhimschi CS. (2008) Proteomic profiling of urine identifies specific fragments of SERPINA1 and albumin as biomarkers of preeclampsia. Am J Obstet Gynecol 199:551.e1-16.
Davey DA, MacGillivray I. (1988) The classification and definition of the hypertensive disorders of pregnancy. Am J Obstet Gynecol 158:892-898;
del Rio G, Castro-Obregon S, Rao R, Ellerby HM, Bredesen DE (2001) APAP, a sequence-pattern recognition approach identifies substance P as a potential apoptotic peptide. FEBS Lett 494:213−219.
Dosztanyi Z, Csizmok V, Tompa P, Simon I. (2005) IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21:3433-3434.
Dosztanyi Z, Meszaros B, Simon I. (2009) ANCHOR: web server for predicting protein binding regions in disordered proteins. Bioinformatics, 25:2745-2746.
Dosztanyi, Z., Meszaros, B., & Simon, I. (2009). ANCHOR: web server for predicting protein binding regions in disordered proteins. Bioinformatics 25: 2745-2746.
Duley L. (2009) The global impact of pre-eclampsia and eclampsia. Semin Perinatol 33:130-137.
Dunker AK, Cortese MS, Romero P, Iakoucheva LM, Uversky VN. (2005) Flexible nets. The roles of intrinsic disorder in protein interaction networks. FEBS J 272:5129-5148.
Dunker AK, Silman I, Uversky VN, Sussman JL. (2008) Function and structure of inherently disordered proteins. Curr Opin Struct Biol 18:756-764.
Dyson HJ, Wright PE. (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6:197-208.
Fan X, Kurgan L. (2014) Accurate prediction of disorder in protein chains with a comprehensive and empirically designed consensus. Journal of biomolecular structure & dynamics 32:448-464.
Goel A, Rana S. Angiogenic factors in preeclampsia: potential for diagnosis and treatment. Curr Opin Nephrol Hypertens 22:643-50. DOI: 10.1097/MNH.0b013e328365ad 98.
Habchi J, Tompa P, Longhi S, Uversky VN. (2014) Introducing protein intrinsic disorder. Chem Rev 114:6561-6588.
Hsu TY, Hsieh TT, Yang KD, Tsai CC, Ou CY, Cheng BH, Wong YH, Hung HN, Chou AK, Hsiao CC, Lin H. (2015) Proteomic profiling reveals α1-antitrypsin, α1-microglobulin, and clusterin as preeclampsia-related serum proteins in pregnant women. Taiwan J Obstet Gynecol 54:499-504.
Ishida T, Kinoshita K. (2007) PrDOS: prediction of disordered protein regions from amino acid sequence. Nucleic Acids Res 35:W460-W464.
Jakob U, Kriwacki R, Uversky VN. (2014) Conditionally and transiently disordered proteins: awakening cryptic disorder to regulate protein function. Chem Rev 114:6779-6805.
Kageyama R, Ohkubo H, Nakanishi S. (1984) Primary structure of human preangiotensinogen deduced from the cloned cDNA sequence. Biochemistry 23:3603−3609.
Khan KS, Wojdyla D, Say L, Gülmezoglu AM, Van Look PF. (2006) WHO analysis of causes of maternal death: a systematic review. Lancet 367:1066-74.
Linding R, Jensen LJ, Diella F, Bork P, Gibson TJ, Russell RB. (2003)Protein disorder prediction: implications for structural proteomics. Structure 11:1453-1459.
Lockwood CJ, Yen CF, Basar M, Kayisli UA, Martel M, Buhimschi I, Buhimschi C, Huang SJ, Krikun G, Schatz F. (2008) Preeclampsia-related inflammatory cytokines regulate interleukin-6 expression in human decidual cells. Am J Pathol 172:1571-1579.
Maynard SE, Karumanchi SA. (2011) Angiogenic factors and preeclampsia. Semin Nephrol 31:33-46. DOI: 10.1016/j.semnephrol.2010.10.004.
Meszaros B, Simon I, Dosztanyi Z. (2009). Prediction of protein binding regions in disordered proteins. PLoS Comput Biol 5:e1000376.
Oates ME, Romero P, Ishida T, Ghalwash M, Mizianty MJ, Xue B, Dosztanyi Z, Uversky VN, Obradovic Z, Kurgan L, et al. (2013) D(2)P(2): database of disordered protein predictions. Nucleic Acids Res 41:D508-D516.
Oldfield CJ, Cheng Y, Cortese MS, Brown CJ, Uversky VN, Dunker AK. (2005). Comparing and combining predictors of mostly disordered proteins. Biochemistry 44:1989-2000.
Oldfield CJ, Dunker AK. (2014) Intrinsically disordered proteins and intrinsically disordered protein regions. Annu Rev Biochem 83:553-584.
Oldfield, C. J., Cheng, Y., Cortese, M. S., Brown, C. J., Uversky, V. N., & Dunker, A. K. (2005). Comparing and combining predictors of mostly disordered proteins. Biochemistry 44, 1989-2000.
Oldfield, C. J., Cheng, Y., Cortese, M. S., Brown, C. J., Uversky, V. N., & Dunker, A. K. (2005). Comparing and combining predictors of mostly disordered proteins. Biochemistry 44:1989-2000.
Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Waqkamatsu A, Hayashi K, Sato H, Nagai K, Kimuara K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakabe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senha T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T, Sugano S. (2004) Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet 36:40−45.
Pauling L (1960) The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry. Cornell University Press. pp. 644, ISBN:9780801403330, USA.
Peng K, Radivojac P, Vucetic S, Dunker AK, Obradovic Z. (2006) Length-dependent prediction of protein intrinsic disorder. BMC Bioinformatics 7:208.
Peng K, Vucetic S, Radivojac P, Brown CJ, Dunker AK, Obradovic Z. (2005) Optimizing long intrinsic disorder predictors with protein evolutionary information. J Bioinform Comput Biol 3:35-60.
Peng Z, Kurgan L. (2012) On the complementarity of the consensus-based disorder prediction. Pac Symp Biocomput 2012:176-187.
Peng Z, Yan J, Fan X, Mizianty MJ, Xue B, Wang K, Hu G, Uversky VN, Kurgan L. (2015) Exceptionally abundant exceptions: comprehensive characterization of intrinsic disorder in all domains of life. Cell Mol Life Sci 72:137-151.
Peng ZL, Kurgan L. (2012) Comprehensive comparative assessment of in-silico predictors of disordered regions. Curr Protein Pept Sci 13:6-18.
Polanco C, Castañón-González JA, Buhse T, Uversky VN, Zonana-Amkie R, Samaniego JL (2015) Classifying lipoproteins based on their polar profiles. Acta Biochim Pol (in press).
Polanco C, Castañón-González JA, Uversky VM (Letter to the Editor) Buhimschi IA, Nayeri UA, Zhao G, Shook LL, Pensalfini A, Funai EF, Bernstein IM, Glabe CG, Buhimschi CS (2014e) Protein misfolding, congophilia, oligomerization, and defective amyloid processing in preeclampsia. Sci Transl Med 6:245ra92. DOI:10.1126/scitranslmed. 3008808.
Polanco C, Samaniego JL (2009) Detection of selective cationic amphipathic antibacterial peptides by Hidden Markov models. Acta Biochim Pol 56: 167−176.
Polanco C, Samaniego JL, Buhse T, Castañón González JA (2013) A toy model of prebiotic peptide evolution: the possible role of relative amino acid abundances. Acta Biochim Pol 60:175−182.
Polanco C, Samaniego JL, Buhse T, Mosqueira FG, Negron-Mendoza A, Ramos-Bernal S, Castanon-Gonzalez JA (2012) Characterization of Selective Antibacterial Peptides by Polarity Index. International Journal of Peptides 2012:58502, http://dx.doi.org/10.1155/ 2012/585027
Polanco C, Samaniego JL, Castañón-González JA, Buhse T (2014a) Polar Profile of Antiviral Peptides from AVPpred Database. Cell Biochem Biophys 70:1469−1477. DOI: 10.1007/ s12013-014-0084-4.
Polanco C, Samaniego JL, Castañón-González JA, Buhse T, Sordo ML (2013) Detection of selective antibacterial peptides by the Polarity Profile method. Acta Biochim Pol 60:183-189.
Polanco C, Samaniego JL, Castañón-González JA, Buhse T, Sordo ML (2013a) Characterization of a possible uptake mechanism of selective antibacterial peptides. Acta Biochim Pol 60: 629−633.
Polanco C, Samaniego JL, Castañón-González JA, Buhse T, Sordo ML (2013b) Detection of selective antibacterial peptides by the Polarity Profile method. Acta Biochim Pol 60: 183−189.
Polanco C, Samaniego JL, Uversky VN, Castañón-González JA, Buhse T, Leopold-Sordo M, Madero-Arteaga A, Morales-Reyes A, Tavera-Sierra L, González-Bernal JA, Arias-Estrada M (2014) Identification of proteins associated with amyloidosis by polarity index method Acta Biochim Pol 62:41−55.
Polanco C, Samaniego JL, Uversky VN, Castañón-González JA, Buhse T, Leopold-Sordo M, Madero-Arteaga A, Morales-Reyes A, Tavera-Sierra L, González-Bernal JA, Arias-Estrada M (2015) Identification of proteins associated with amyloidosis by polarity index method. Acta Biochim Pol 62:41−55.
Polanco C, Samaniego-Mendoza JL, Buhse T, Castañón-González JA, Leopold-Sordo M (2014b) Polar Characterization of Antifungal Peptides from APD2 Database. Cell Biochem Biophys 70:1479−1488. DOI: 10.1007/s12013-014-0085-3.
Polanco C, Samaniego-Mendoza JL, Castañón-González JA, Buhse T (Letter to the Editor) Howard SJ, Hopwood S, Davies SC. (2014d) Antimicrobial Resistance: A Global Challenge Sci. Transl. Med DOI:10.1126/scitranslmed. 3009315.
Polanco C., Samaniego JL, Castañón-González JA, Buhse T, Arias-Estrada M (2014b) Computational model of abiogenic amino acid condensation to obtain a polar amino acid profile. Acta Biochim Pol 61: 253−258.
Potenza E, Di Domenico T, Walsh I, Tosatto SC. (2015) MobiDB 2.0: an improved database of intrinsically disordered and mobile proteins. Nucleic Acids Res 43(Database issue):D315-20. DOI: 10.1093/nar/gku982.
Powe CE, Levine RJ, Karumanchi SA. (2011) Preeclampsia, a disease of the maternal endothelium: the role of anti-angiogenic factors and implications for later cardiovascular disease. Circulation 123:2856-2869.
Rana S, Hacker MR, Modest AM, Salahuddin S, Lim KH, Verlohren S, Perschel FH, Karumanchi SA. (2012) Circulating angiogenic factors and risk of adverse maternal and perinatal outcomes in twin pregnancies with suspected preeclampsia. Hypertension 60:451-458.
Romero P, Obradovic Z, Li X, Garner EC, Brown CJ, Dunker AK. (2001) Sequence complexity of disordered protein. Proteins 42:38-48.
Romero PR, Zaidi S, Fang YY, Uversky VN, Radivojac P, Oldfield CJ, Cortese MS, Sickmeier M, LeGall T, Obradovic Z, Dunker AK. (2006) Alternative splicing in concert with protein intrinsic disorder enables increased functional diversity in multicellular organisms. Proc Natl Acad Sci U S A 103:8390-8395.
Sheppard P., Jelinek L., Whitmore T., Blumberg H., Lehner J., O'Hara P., Submitted (SEP-1999) to the EMBL/GenBank/DDBJ databases., http://www.uniprot.org/uniprot/Q9UHF0 accessed January 20, 2016.
Shibuya M, Yamaguchi S, Yamane A, Ikeda T, Tojo A, Matsushime H, Sato M. (1990) Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to the fms family. Oncogene 5:519−524.
Skoda RC, Demierre A, McBride OW, Gonzalez FJ, Meyer UA. ((1988) Human microsomal xenobiotic epoxide hydrolase. Complementary DNA sequence, complementary DNA-directed expression in COS-1 cells, and chromosomal localization. J Biol Chem 263:1549−1554.
Szklarczyk, D., Franceschini, A., Kuhn, M., Simonovic, M., Roth, A., Minguez, P., . . . von Mering, C. (2011). The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39(Database issue), D561-D568.
Tompa P, Schad E, Tantos A, Kalmar L. (2015) Intrinsically disordered proteins: emerging interaction specialists. Curr Opin Struct Biol 35:49-59,
UniProt Consortium. (2015) UniProt: a hub for protein information. Nucleic Acids Res. 43(Database issue):D204-12.
Uversky V. N., Oldfield C. J., Dunker A. K. (2008) Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu Rev Biophys 37, 215-246.
Uversky V.N. (2009) Intrinsic disorder in proteins associated with neurodegenerative diseases. Frontiers in Bioscience. 14:5188−5238.
Uversky V.N. (2010a) Mysterious oligomerization of the amyloidogenic proteins. FEBS Journal. 277:2940−2953.
Uversky VN, Davé V, Iakoucheva LM, Malaney P, Metallo SJ, Pathak RR, Joerger AC. (2014) Pathological unfoldomics of uncontrolled chaos: intrinsically disordered proteins and human diseases. Chem Rev. 114:6844-6879.
Uversky VN, Dunker AK (2010) Understanding protein non-folding. Biochim Biophys Acta 1804: 1231-1264; Uversky VN (2013) Intrinsic Disorder-based Protein Interactions and their Modulators. Curr Pharm Des 19:4191−4213.
Uversky VN, Dunker AK. (2010) Understanding protein non-folding. Biochim Biophys Acta 1804:1231-1264.
Uversky VN, Fink AL (2004) Conformational constraints for the amyloid fibrillation: The importance of being unfolded. Biochim Biophys Acta 1698:131−153.
Uversky VN, Gillespie JR, Fink AL (2000) Why are "natively unfolded" proteins unstructured under physiologic conditions? Proteins 41:415−427.
Uversky VN, Oldfield CJ, Dunker AK (2008a) Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu Rev Biophys 37:215−246.
Uversky VN, Oldfield CJ, Dunker AK. (2005) Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. J Mol Recognit 18:343-384.
Uversky VN. (2002) Natively unfolded proteins: a point where biology waits for physics. Protein Sci 11:739‒756.
Uversky VN. (2002a) What does it mean to be natively unfolded? Eur J Biochem 269:2−12.
Uversky VN. (2010b) The mysterious unfoldome: structureless, underappreciated, yet vital part of any given proteome. J Biomed Biotechnol 2010:568068.
Uversky, V. N., Gillespie, J. R., & Fink, A. L. (2000). Why are "natively unfolded" proteins unstructured under physiologic conditions? Proteins 41:415-427.
van der Lee R, Buljan M, Lang B, Weatheritt RJ, Daughdrill GW, Dunker AK, Fuxreiter M, Gough J, Gsponer J, Jones DT, Kim PM, Kriwacki RW, Oldfield CJ, Pappu RV, Tompa P, Uversky VN, Wright PE, Babu MM. (2014) Classification of intrinsically disordered regions and proteins. Chem Rev 114:6589-6631.
Walsh I, Giollo M, Di Domenico T, Ferrari C, Zimmermann O, Tosatto SC. (2015) Comprehensive large-scale assessment of intrinsic protein disorder. Bioinformatics 31:201-208.
Walsh I, Martin AJ, Di Domenico T, Tosatto SC. (2012) ESpritz: accurate and fast prediction of protein disorder. Bioinformatics 28:503-509.
Walsh I, Martin AJ, Di Domenico T, Tosatto SC. ESpritz: accurate and fast prediction of protein disorder. Bioinformatics 28:503-509.
Wang G, Li X, Wang Z (2009) APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res 37:D933−D937, accessed December 19, 2012.
Winn VD, Gormley M, Paquet AC, Kjaer-Sorensen K, Kramer A, Rumer KK, Haimov-Kochman R, Yeh RF, Overgaard MT, Varki A, Oxvig C, Fisher SJ. (2009) Severe preeclampsia-related changes in gene expression at the maternal-fetal interface include sialic acid-binding immunoglobulin-like lectin-6 and pappalysin-2. Endocrinology 150:452-462.
Wright PE, Dyson HJ. (2015) Intrinsically disordered proteins in cellular signalling and regulation. Nat Rev Mol Cell Biol 16:18-29.
Xue B, Dunbrack RL, Williams RW, Dunker AK, Uversky VN. (2010) PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. Biochim Biophys Acta 1804:996-1010.
Xue B, Dunker AK, Uversky VN. (2012) Orderly order in protein intrinsic disorder distribution: disorder in 3500 proteomes from viruses and the three domains of life. J Biomol Struct Dyn 30:137-149.
Yan W, Sheng N, Seto M, Morser J, Wu Q. (1999) Corin, a mosaic transmembrane serine protease encoded by a novel cDNA from human heart. J Biol Chem 274:14926−14935.
Yang H, Ahn C, Jeung EB. (2015) Differential expression of calcium transport genes caused by COMT inhibition in the duodenum, kidney and placenta of pregnant mice. Mol Cell Endocrinol 401:45-55.
Yang ZR, Thomson R, McNeil P, Esnouf RM. (2005) RONN: the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins. Bioinformatics 21:3369-3376.
Zimmermann K, Opitz N, Dedio J, Renne C, Muller-EsterI W, Oess S. (2002) NOSTRIN: a protein modulating nitric oxide release and subcellular distribution of endothelial nitric oxide synthase. Proc Natl Acad Sci U.S.A. 99:17167−17172.
Acta Biochimica Polonica is an OpenAccess quarterly and publishes four issues a year. All contents are distributed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY 4.0) license. Everybody may use the content following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
Copyright for all published papers © stays with the authors.
Copyright for the journal: © Polish Biochemical Society.