The choice of anchoring protein influences interaction of recombinant Bacillus spores with the immune system

  • Aurelia Piekarska
  • Paulina Pełka
  • Grażyna Peszyńska-Sularz
  • Alessandro Negri
  • Krzysztof Hinc
  • Michał Obuchowski
  • Adam Iwanicki Intercollegiate Faculty of Biotechnology UG-MUG Department of Medical Biotechnology Medical University of Gdańsk
Keywords: Bacillus subtilis, spore display, APCs, FliD, Clostridium difficile, immune response

Abstract

The technology of display of heterologous proteins on the surface of Bacillus subtilis spores enables use of these structures as carriers of antigens for mucosal vaccination. Currently there are no technical possibilities to predict, whether a designed fusion will be efficiently displayed on the spore surface and how such recombinant spores will interact with cells of the immune system. In this study we compared four variants of B. subtilis spores presenting a fragment of FliD protein of Clostridium difficile in fusion with CotB, CotC, CotG or CotZ spore coat proteins. We show that these spores promote their phagocytosis and activate both, J774 macrophages and JAWSII dendritic cells of murine cell lines. Moreover, we used these spores for mucosal immunization of mice. We conclude that observed effects vary with the type of displayed FliD-spore coat protein fusion and seem to be mostly independent on its abundance and localization in the spore coat structure.

References

Abhyankar W, de Koning LJ, Brul S, de Koster CG (2014) Spore proteomics: the past, present and the future. FEMS Microbiol Lett 358: 137–144. http://dx.doi.org/10.1111/1574-6968.12568

Anagnostopoulos C, Crawford IP (1961) Transformation studies on the linkage of markers in the tryptophan pathway in Bacillus subtilis. Proc Natl Acad Sci U S A 47: 378–390

Ceragioli M, Cangiano G, Esin S, Ghelardi E, Ricca E, Senesi S (2009) Phagocytosis, germination and killing of Bacillus subtilis spores presenting heterologous antigens in human macrophages. Microbiology 155: 338–346. http://dx.doi.org/10.1099/mic.0.022939-0

Cutting SM (2011) Bacillus probiotics. Food Microbiol 28: 214–220. http://dx.doi.org/10.1016/j.fm.2010.03.007

Duc le H, Hong HA, Fairweather N, Ricca E, Cutting SM (2003) Bacterial spores as vaccine vehicles. Infect Immun 71: 2810–2318

Duc LH, Hong HA, Uyen NQ, Cutting SM (2004) Intracellular fate and immunogenicity of B subtilis spores. Vaccine. 22: 1873–1885

Fakhry S, Sorrentini I, Ricca E, De Felice M, Baccigalupi L (2008) Characterization of spore forming Bacilli isolated from the human gastrointestinal tract. J Appl Microbiol 105: 2178–2186. http://dx.doi. org/10.1111/j.1365-2672.2008.03934.x

Hinc K, Isticato R, Dembek M, Karczewska J, Iwanicki A, PeszyńskaSularz G, De Felice M, Obuchowski M, Ricca E (2010) Expression and display of UreA of Helicobacter acinonychis on the surface of Bacillus subtilis spores. Microb Cell Fact 9: 2. http://dx.doi. org/10.1186/1475-2859-9-2

Hinc K, Iwanicki A, Obuchowski M (2013) New stable anchor protein and peptide linker suitable for successful spore surface display in B subtilis. Microb Cell Fact 12: 22. http://dx.doi.org/10.1186/1475- 2859-12-22

Hinc K, Stasiłojć M, Piątek I, Peszyńska-Sularz G, Isticato R, Ricca E, Obuchowski M, Iwanicki A (2014) Mucosal adjuvant activity of IL-2 presenting spores of Bacillus subtilis in a murine model of Helicobacter pylori vaccination. PLoS One 9: e95187. http://dx.doi. org/10.1371/journal.pone.0095187

Hoang TH, Hong HA, Clark GC, Titball RW, Cutting SM (2008) Recombinant Bacillus subtilis expressing the Clostridium perfringens alpha toxoid is a candidate orally delivered vaccine against necrotic enteritis. Infect Immun 76: 5257–5265. http://dx.doi.org/10.1128/ IAI.00686-08

Hong HA, To E, Fakhry S, Baccigalupi L, Ricca E, Cutting SM (2009) Defining the natural habitat of Bacillus spore-formers. Res Microbiol. 160: 375-379. http://dx.doi.org/10.1016/j.resmic.2009.06.006

Huang JM, La Ragione RM, Nunez A, Cutting SM (2008) Immunostimulatory activity of Bacillus spores. FEMS Immunol Med Microbiol 53: 195–203. http://dx.doi.org/10.1111/j.1574-695X.2008.00415.x

Huang JM, Hong HA, Van Tong H, Hoang TH, Brisson A, Cutting SM (2010) Mucosal delivery of antigens using adsorption to bacterial spores. Vaccine. 28: 1021–1030. http://dx.doi.org/10.1016/j.vaccine.2009.10.127

Imamura D, Kuwana R, Takamatsu H, Watabe K (2010) Localization of proteins to different layers and regions of Bacillus subtilis spore coats. J Bacteriol 192: 518–524. http://dx.doi.org/10.1128/JB.01103- 09

Isticato R, Cangiano G, Tran HT, Ciabattini A, Medaglini D, Oggioni MR, De Felice M, Pozzi G, Ricca E (2001) Surface display of recombinant proteins on Bacillus subtilis spores. J Bacteriol 183: 6294– 6301

Isticato R, Esposito G, Zilhão R, Nolasco S, Cangiano G, De Felice M, Henriques AO, Ricca E (2004) Assembly of multiple CotC forms into the Bacillus subtilis spore coat. J Bacteriol 186: 1129–1135

Isticato R, Sirec T, Treppiccione L, Maurano F, De Felice M, Rossi M, Ricca E (2013) Non-recombinant display of the B subunit of the heat labile toxin of Escherichia coli on wild type and mutant spores of Bacillus subtilis. Microb Cell Fact. 12: 98. http://dx.doi. org/10.1186/1475-2859-12-98

Isticato R, Ricca E (2014) Spore surface display. Microbiol Spectr 5: TBS- 0011–2012. http://dx.doi.org/10.1128/microbiolspec.TBS-0011- 2012

Iwanicki A, Piątek I, Stasiłojć M, Grela A, Lęga T, Obuchowski M, Hinc K (2014) A system of vectors for Bacillus subtilis spore surface display. Microb Cell Fact 13: 30. http://dx.doi.org/10.1186/1475- 2859-13-30

Kosaka T, Maeda T, Nakada Y, Yukawa M, Tanaka S (1998) Effect of Bacillus subtilis spore administration on activation of macrophages and natural killer cells in mice. Vet Microbiol 60: 215–225

Liang J, Fu J, Kang H, Lin J, Yu Q, Yang Q (2013) The stimulatory effect of TLRs ligands on maturation of chicken bone marrow-derived dendritic cells. Vet Immunol Immunopathol 155: 205–210. http:// dx.doi.org/10.1016/j.vetimm.2013.06.014

McKenney PT, Driks A, Eskandarian HA, Grabowski P, Guberman J, Wang KH, Gitai Z, Eichenberger P (2010) A distance-weighted interaction map reveals a previously uncharacterized layer of the Bacillus subtilis spore coat. Curr Biol 20: 934–938. http://dx.doi. org/10.1016/j.cub.2010.03.060

McKenney PT, Driks A, Eichenberger P (2013) The Bacillus subtilis endospore: assembly and functions of the multilayered coat. Nat Rev Microbiol 11: 33-44. http://dx.doi.org/10.1038/nrmicro2921

Negri A, Potocki W, Iwanicki A, Obuchowski M, Hinc K (2013) Expression and display of Clostridium difficile protein FliD on the surface of Bacillus subtilis spores. J Med Microbiol 62: 1379–1385. http:// dx.doi.org/10.1099/jmm.0.057372-0

Nicholson WL, Setlow P (1990) Sporulation, germination and outgrowth. In Molecular Biological Methods for Bacillus Harwood C, Cutting S eds, pp 391–450. John Wiley and Sons

Nicholson WL (2002) Roles of Bacillus endospores in the environment. Cell Mol Life Sci 59: 410–416

Péchiné S, Gleizes A, Janoir C, Gorges-Kergot R, Barc MC, Delmée M, Collignon A (2005) Immunological properties of surface proteins of Clostridium difficile. J Med Microbiol 54: 193–196

Permpoonpattana P, Hong HA, Phetcharaburanin J, Huang JM, Cook J, Fairweather NF, Cutting SM (2011) Immunization with Bacillus spores expressing toxin A peptide repeats protects against infection with Clostridium difficile strains producing toxins A and B. Infect Immun 79: 2295–2302. http://dx.doi.org/10.1128/IAI.00130-11

Ricca E, Baccigalupi L, Cangiano G, De Felice M, Isticato R (2014) Mucosal vaccine delivery by non-recombinant spores of Bacillus sub- tilis. Microb Cell Fact 13: 115. http://dx.doi.org/10.1186/s12934-014- 0115-2

Sánchez-Hurtado K, Corretge M, Mutlu E, McIlhagger R, Starr JM, Poxton IR (2008) Systemic antibody response to Clostridium difficile in colonized patients with and without symptoms and matched controls. J Med Microbiol 57: 717–724. http://dx.doi.org/10.1099/ jmm.0.47713-0

Stasiłojć M, Hinc K, Peszyńska-Sularz G, Obuchowski M, Iwanicki A (2015) Recombinant Bacillus subtilis Spores Elicit Th1/Th17- polarized immune response in a murine model of Helicobacter pylori vaccination. Mol Biotechnol 57: 685–691. http://dx.doi.org/10.1007/ s12033-015-9859-0

Tasteyre A, Barc MC, Collignon A, Boureau H, Karjalainen T (2001) Role of FliC and FliD flagellar proteins of Clostridium difficile in adherence and gut colonization. Infect Immun 69: 7937–7940

Valdez A, Yepiz-Plascencia G, Ricca E, Olmos J (2014) First Litopenaeus vannamei WSSV 100% oral vaccination protection using CotC::Vp26 fusion protein displayed on Bacillus subtilis spores surface. J Appl Microbiol 117: 347–357. http://dx.doi.org/10.1111/jam.12550Van de Bunt

M, Gaulton KJ, Parts L, Moran I, Johnson PR, et al. (2013) The miRNA profile of human pancreatic islets and beta-cells and relationship to type 2 diabetes pathogenesis. PLoS One 8: e55272. https://doi.org/10.1371/journal.pone.0055272

Published
2017-07-11
Section
Articles