New functionality of RNAComposer: application to shape the axis of miR160 precursor structure

  • Maciej Antczak Institute of Computing Science, Poznan University of Technology
  • Mariusz Popenda Institute of Bioorganic Chemistry, Polish Academy of Sciences
  • Tomasz Zok Institute of Computing Science, Poznan University of Technology
  • Joanna Sarzynska Institute of Bioorganic Chemistry, Polish Academy of Sciences
  • Tomasz Ratajczak Institute of Computing Science, Poznan University of Technology
  • Katarzyna Tomczyk Institute of Computing Science, Poznan University of Technology
  • Ryszard Walenty Adamiak Institute of Bioorganic Chemistry, Polish Academy of Sciences
  • Marta Szachniuk Institute of Bioorganic Chemistry, Polish Academy of Sciences and Institute of Computing Science, Poznan University of Technology
Keywords: RNA 3D structure prediction, RNAComposer, plant miRNA precursor

Abstract

RNAComposer is a fully automated, web-interfaced system for RNA 3D structure prediction, freely available at http://rnacomposer.cs.put.poznan.pl/ and http://rnacomposer.ibch.poznan.pl/. Its main components are: manually curated database of RNA 3D structure elements, highly efficient computational engine and user-friendly web application. In this paper, we demonstrate how the latest additions to the system allow the user to significantly affect the process of 3D model composition on several computational levels. Although in general our method is based on the knowledge of secondary structure topology, currently RNAComposer offers a choice of six incorporated programs for secondary structure prediction. It allows also to apply conditional search in the database of 3D structure elements and introduce user-provided elements into the final 3D model. This new functionality contributes to a significant improvement of the predicted 3D model reliability and it facilitates better model adjustment to the experimental data. This is exemplified based on RNAComposer application for modelling of the 3D structures of precursors of miR160 family members.

Author Biography

Marta Szachniuk, Institute of Bioorganic Chemistry, Polish Academy of Sciences and Institute of Computing Science, Poznan University of Technology
Laboratory of Bioinformatics

References

Afonin KA, Viard M, Koyfman AY, Martins AN, Kasprzak WK, Panigaj M, Desai R, Santhanam A, Grabow WW, Jaeger L, Heldman E, Reiser J, Chiu W, Freed EO, Shapiro BA (2014) Multifunctional RNA nanoparticles. Nano Letters 14: 5662-56671. doi:10.1021/nl502385k

Antczak M, Zok T, Popenda M, Lukasiak P, Adamiak RW, Blazewicz J, Szachniuk M (2015) RNApdbee - a webserver to derive secondary structures from pdb files of knotted and unknotted RNAs. Nucleic Acids Research 42: W368–W372. doi:10.1093/nar/gku330

Axtell MJ, Westholm JO, Lai EC (2011) Vive la différence: biogenesis and evolution of microRNAs in plants and animals. Genome Biology 12: 221. doi: 10.1186/gb-2011-12-4-221

Bartel DP, Lee R, Feinbaum R (2004) MicroRNAs : Genomics, Biogenesis, Mechanism, and Function. Cell 116: 281–297.

Belew AT, Meskauskas A, Musalgaonkar S, Advani VM, Sulima SO, Kasprzak WK, Shapiro BA, Dinman JD (2014) Ribosomal frameshifting in the CCR5 mRNA is regulated by miRNAs and the NMD pathway. Nature 512: 265–269. doi:10.1038/nature13429

Biesiada M, Pachulska-Wieczorek K, Adamiak RW, Purzycka KJ (2016) RNAComposer and RNA 3D structure prediction for nanotechnology. Methods. doi:10.1016/j.ymeth.2016.03.010

Blazewicz J, Szachniuk M, Wojtowicz A (2005) RNA tertiary structure determination: NOE pathway construction by tabu search. Bioinformatics 21: 2356–2361. doi: 10.1093/bioinformatics/bti351

Blazewicz J, Figlerowicz M, Kasprzak M, Nowacka M, Rybarczyk A (2011) RNA partial degradation problem: motivation, complexity, algorithm. Journal of Computational Biology 18: 821–834. doi: 10.1089/cmb.2010.0153

Bologna NG, Schapire AL, Zhai J, Chorostecki U, Boisbouvier J, Meyers BC, Palatnik JF (2013) Multiple RNA recognition patterns during microRNA biogenesis in plants. Genome Research 23:1675-1689. doi:10.1101/gr.153387.112

Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O (2008) Widespread Translational Inhibition by Plant miRNAs and siRNAs. Science 320:1185-1190. doi:10.1126/science.1159151

Case DA, Berryman JT, Betz RM, Cerutti DS, Cheatham III TE, Darden TA, Duke RE, Giese TJ, Gohlke H, Goetz AW, Homeyer N, Izadi S, Janowski P, Kaus J, Kovalenko A, Lee TS, LeGrand S, Li P, Luchko T, Luo R, Madej B, Merz KM, Monard G, Needham P, Nguyen HT, Omelyan I, Onufriev A, Roe DR, Roitberg A, Salomon-Ferrer R, Simmerling CL, Smith W, Swails J, Walker RC, Wang J, Wolf RM, Wu X, York DM, Kollman PA (2015) AMBER 2015, University of California, San Francisco.

Chen HM, Chen LT, Patel K, Li YH, Baulcombe DC, Wu SH (2010) 22-nucleotide RNAs trigger secondary siRNA biogenesis in plants. Proceedings of the National Academy of Sciences 107:15269-15274. doi:10.1073/pnas.1001738107

Cornilescu G, Didychuk AL, Rodgers ML, Michael LA, Burke JE, Montemayor EJ, Hoskins AA, Butcher SE (2015) Structural Analysis of Multi-Helical RNAs by NMR-SAXS/WAXS: Application to the U4/U6 di-snRNA. Journal of Molecular Biology 428:777–789. doi:10.1016/j.jmb.2015.11.026

Cuperus JT, Carbonell A, Fahlgren N, Garcia-Ruiz H, Burke RT, Takeda A, Sullivan CM, Gilbert SD, Montgomery TA, Carrington JC (2010) Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nature Structural & Molecular Biology 17:997-1003. doi:10.1038/nsmb.1866

Do CB, Woods DA, Batzoglou S (2006) CONTRAfold: RNA Secondary Structure Prediction without Energy-Based Models. Bioinformatics 22: e90–e98. doi:10.1093/bioinformatics/btl246

Dror O, Nussinov R, Wolfson HJ (2006). The ARTS web server for aligning RNA tertiary structures. Nucleic Acids Research 34: W412-W415. doi:10.1093/nar/gkl312

Du Z, Lee JK, Tjhen R, Stroud RM, James TL (2008) Structural and biochemical insights into the dicing mechanism of mouse Dicer: A conserved lysine is critical for dsRNA cleavage. Proceedings of the National Academy of Sciences 105: 2391-2396. doi:10.1073/pnas.0711506105

Dufour D, Marti-Renom MA (2015) Software for predicting the 3D structure of RNA molecules. Wiley Interdisciplinary Reviews: Computational Molecular Science 5: 56–61. doi:10.1002/wcms.1198

Felden B (2007) RNA structure: experimental analysis. Current Opinion in Microbiology 10: 286–291. doi:10.1016/j.mib.2007.05.001

Feng Y, Zhang X, Graves P, Zeng Y (2012) A comprehensive analysis of precursor microRNA cleavage by human Dicer. RNA 18:2083-2092. doi:10.1261/rna.033688.112

Gabryelska MM, Wyszko E, Szymanski M, Popenda M, Barciszewski J (2013) Prediction of hammerhead ribozyme intracellular activity with the catalytic core fingerprint. Biochemical Journal 451: 439-451. doi:10.1042/BJ20121761

Galka-Marciniak P, Olejniczka M, Starega-Roslan J, Szczesniak MW, Makalowska I, Krzyzosiak WJ (2016) siRNA release from pri-miRNA scaffolds is controlled by the sequence and structure of RNA. Biochimica et Biophysica Acta – Gene Regulatory Mechanisms 1859: 639–649. doi:10.1016/j.bbagrm.2016.02.014

Gan J, Tropea JE, Austin BP, Court DL, Waugh DS, Ji X (2006) Structural Insight into the Mechanism of Double-Stranded RNA Processing by Ribonuclease III. Cell 124: 355-366. doi:10.1016/j.cell.2005.11.034

Gan J, Shaw G, Tropea JE, Waugh DS, Court DL, Ji X (2008) A stepwise model for double-stranded RNA processing by ribonuclease III. Molecular Microbiology 67: 143-154. doi:10.1111/j.1365-2958.2007.06032.x

Gupta A, Swati D (2016) Hammerhead ribozymes in archaeal genomes: a computational hunt. Interdisciplinary Sciences Computational Life Sciences. doi: 10.1007/s12539-016-0141-3

Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK, Sohn SY, Cho Y, Zhang BT, Kim VN (2006) Molecular Basis for the Recognition of Primary microRNAs by the Drosha-DGCR8 Complex Cell. Cell 125: 887-901 doi:10.1016/j.cell.2006.03.043

Höchsmann M (2005) The tree alignment model: algorithms, implementations and applications for the analysis of RNA secondary structures. Bielefeld University. PhD Thesis.

Hutvágner G, McLachlan J, Pasquinelli AE, Bálint É, Tuschl T, Zamore PD (2001) A Cellular Function for the RNA-Interference Enzyme Dicer in the Maturation of the let-7 Small Temporal RNA. Science 293: 834-838. doi:10.1126/science.1062961

Jones CP, Cantara WA, Olson ED, Musier-Forsyth K (2014) Small-angle X-ray scattering-derived structure of the HIV-1 5’ UTR reveals 3D tRNA mimicry. Proceedings of the National Academy of Sciences of the United States of America 111: 3395–400. doi:10.1073/pnas.1319658111

Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Research 42: D68-D73. doi:10.1093/nar/gkt1181

Kurihara Y, Watanabe Y (2004) Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proceedings of the National Academy of Sciences 101: 12753-12758. doi:10.1073/pnas.0403115101

Kwon S, Nguyen T, Choi YG, Jo M, Hohng S, Kim V, Woo JS (2016) Structure of Human DROSHA. Cell 164: 81-90. doi:10.1016/j.cell.2015.12.019

Lavery R, Moakher M, Maddocks JH, Petkeviciute D, and Zakrzewska K (2009) Conformational analysis of nucleic acids revisited: Curves+ Nucleic Acids Research 37 (17): 5917-5929 doi:10.1093/nar/gkp608

Lee WC, Lu SH, Lu MH, Yang CJ, Wu SH, Chen HM (2015) Asymmetric bulges and mismatches determine 20-nt microRNA formation in plants. RNA Biology 12: 1054-1066. doi:10.1080/15476286.2015.1079682

Lorenz R, Bernhart SH, Höner zu Siederdissen C, Tafer H, Flamm C, Stadler PF, Hofacker IL (2011) ViennaRNA Package 2.0. Algorithms for Molecular Biology 6: 26. doi:10.1186/1748-7188-6-26

Lisowiec J, Magner D, Kierzek E, Lenartowicz E, Kierzek R (2015) Structural determinants for alternative splicing regulation of the MAPT pre-miRNA. RNA Biology 12: 330–342. doi:10.1080/15476286.2015.1017214

Liu C, Axtell MJ, Fedoroff NV (2012) The helicase and RNaseIIIa domains of Arabidopsis Dicer-Like1 modulate catalytic parameters during microRNA biogenesis. Plant Physiology 159: 748–58. doi:10.1104/pp.112.193508

Lu X, Olson WK (2003) 3DNA: a software package for the analysis, rebuilding and visualization of three‐dimensional nucleic acid structures. Nucleic Acids Research 31: 5108-5121. doi:10.1093/nar/gkg680

MacRae IJ, Zhou K, Li F, Repic A, Brooks AN, Cande WZ, Adams PD, Doudna JA (2006) Structural Basis for Double-Stranded RNA Processing by Dicer. Science 311: 195-198. doi:10.1126/science.1121638

MacRae IJ, Doudna JA (2007) An unusual case of pseudo-merohedral twinning in orthorhombic crystals of Dicer. Acta Crystallographica Section D 63: 993-999. doi:10.1107/S0907444907036128

MacRae IJ, Doudna JA (2007) Ribonuclease revisited: structural insights into ribonuclease III family enzymes. Current Opinion in Structural Biology 17: 138–145. doi:10.1016/j.sbi.2006.12.002

Manavella PA, Koenig D, Weigel D (2012) Plant secondary siRNA production determined by microRNA-duplex structure. Proceedings of the National Academy of Sciences 109: 2461-2466. doi:10.1073/pnas.1200169109

Mateos JL, Bologna NG, Chorostecki U, Palatnik JF (2010) Identification of MicroRNA Processing Determinants by Random Mutagenesis of Arabidopsis MIR172a Precursor. Current Biology 20: 49-54. doi:10.1016/j.cub.2009.10.072

Miao Z, Adamiak RW, Blanchet M-F, Boniecki M, Bujnicki JM, Chen S-J, Cheng C, Chojnowski G, Chou F-C, Cordero P, Cruz JA, Ferre-D'Amare A, Das R, Ding F, Dokholyan NV, Dunin-Horkawicz S, Kladwang W, Krokhotin A, Lach G, Magnus M, Major F, Mann TH, Masquida B, Matelska D, Meyer M, Peselis A, Popenda M, Purzycka KJ, Serganov A, Stasiewicz J, Szachniuk M, Tandon A, Tian S, Wang J, Xiao Y, Xu X, Zhang J, Zhao P, Zok T, Westhof E (2015) RNA-Puzzles Round II: Assessment of RNA structure prediction programs applied to three large RNA structures. RNA 21: 1–19. doi:10.1261/rna.049502.114

Mickiewicz A, Rybarczyk A, Sarzynska J, Figlerowicz M, Blazewicz J (2016) AmiRNA Designer - new method of artificial miRNA design. Acta Biochimica Polonica 63: 71–77. doi:10.18388/abp.2015_989

Nicholson AW (2014) Ribonuclease III mechanisms of double-stranded RNA cleavage. Wiley Interdisciplinary Reviews: RNA 5:31-48. doi:10.1002/wrna.1195

Nishida Y, Pachulska-Wieczorek K, Blaszczyk L, Saha A, Gumna J, Garfinkel DJ, Purzycka KJ (2015) Ty1 retrovirus-like element Gag contains overlapping restriction factor and nucleic acid chaperone functions. Nucleic Acids Research 43: 7414–7431. doi:10.1093/nar/gkv695

Nowacka M, Jackowiak P, Rybarczyk A, Magacz T, Strozycki PM, Barciszewski J, Figlerowicz M (2012) 2D-PAGE as an effective method of RNA degradome analysis. Molecular Biology Reports 39: 139–146. doi:10.1007/s11033-011-0718-1

Pawlowska R, Janicka M, Jedrzejczyk D, Chworos A (2016) RNA fragments mimicking tRNA analogs interact with cytochrome c. Molecular Biology Reports 43: 295–304. doi: 10.1007/s11033-016-3954-6

Peschek J, Acosta-Alvear D, Mendez AS, Walter P (2015) A conformational RNA zipper promotes intron ejection during non-conventional XBP1 mRNA splicing. EMBO Reports 16: 1688–1698. doi:10.15252/embr.201540955

Popenda M, Blazewicz M, Szachniuk M, Adamiak RW (2008) RNA FRABASE version 1.0: an engine with a database to search for the three-dimensional fragments within RNA structures. Nucleic Acids Research 36: D386–D391. doi:10.1093/nar/gkm786

Popenda M, Szachniuk M, Antczak M, Purzycka KJ, Lukasiak P, Bartol N, Blazewicz J, Adamiak RW (2012) Automated 3D structure composition for large RNAs. Nucleic Acids Research 40: e112. doi:10.1093/nar/gks339

Purzycka KJ, Garfinkel DJ, Boeke JD, Le Grice SFJ (2013) Influence of RNA structural elements on Ty1 retrotransposition. Mob Genet Elements 3: e25060, doi: 10.4161/mge.25060

Purzycka KJ, Popenda M, Szachniuk M, Antczak M, Lukasiak P, Blazewicz J, Adamiak RW (2014) Automated 3D RNA structure prediction using the RNAComposer method for riboswitches. Methods in Enzymology: Computational Methods for Understanding Riboswitches 553: 3–34. doi:10.1016/bs.mie.2014.10.050

Puton T, Kozlowski LP, Rother KM, Bujnicki JM (2013) CompaRNA: a server for continuous benchmarking of automated methods for RNA secondary structure prediction. Nucleic Acids Research 41: 4307–4323. doi:10.1093/nar/gkt101

Rausch JW, Le Grice SF (2015) HIV Rev Assembly on the Rev Response Element (RRE): A Structural Perspective. Viruses 7: 3053–3075. doi:10.3390/v7062760

Reuter JS, Mathews DH (2010) RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics 11: 129. doi:10.1186/1471-2105-11-129

Rose PW, Beran B, Bi C, Bluhm WF, Dimitropoulos D, Goodsell DS, Prlic A, Quesada M, Quinn GB, Westbrook JD, Young B, Yukich B, Zardecki C, Berman HM, Bourne PE (2011) The RCSB Protein Data Bank: redesigned web site and web services. Nucleic Acids Research 39: D392–D401. doi: 10.1093/nar/gkq1021

Rybarczyk A, Szostak N, Antczak M, Zok T, Popenda M, Adamiak RW, Blazewicz J, Szachniuk M (2015) New in silico approach to assessing RNA secondary structures with non-canonical base pairs. BMC Bioinformatics 16: 276. doi:10.1186/s12859-015-0718-6

Sato K, Hamada M, Asai K, Mituyama T (2009) CENTROIDFOLD: a web server for RNA secondary structure prediction. Nucleic Acids Research 37: W277–80. doi:10.1093/nar/gkp367

Sato K, Kato Y, Hamada M, Akutsu T, Asai K (2011) IPknot: fast and accurate prediction of RNA secondary structures with pseudoknots using integer programming. Bioinformatics 27: i85–i93. doi:10.1093/bioinformatics/btr215

Schrödinger, LLC (2016) The PyMOL Molecular Graphics System, Version 1.8

Song L, Axtell MJ, Fedoroff NV (2010) RNA Secondary Structural Determinants of miRNA Precursor Processing in Arabidopsis. Current Biology 20: 37-41. doi:10.1016/j.cub.2009.10.076

Starega-Roslan J, Koscianska E, Kozlowski P, Krzyzosiak WJ (2011) The role of the precursor structure in the biogenesis of microRNA. Cellular and Molecular Life Sciences 68: 2859-2871. doi:10.1007/s00018-011-0726-2

Starega-Roslan J, Krol J, Koscianska E, Kozlowski P, Szlachcic WJ, Sobczak K, Krzyzosiak WJ (2011) Structural basis of microRNA length variety. Nucleic Acids Research 39: 257-268. doi:10.1093/nar/gkq727

Szostak N, Royo F, Rybarczyk A, Szachniuk M, Blazewicz J, del Sol A, Falcon-Perez JM (2014) Sorting signal targeting mRNA into hepatic extracellular vesicles. RNA Biology 11: 836–844. doi:10.4161/rna.29305

Takeshita D, Zenno S, Lee WC, Nagata K, Saigo K, Tanokura M (2007) Homodimeric Structure and Double-stranded RNA Cleavage Activity of the C-terminal RNase III Domain of Human Dicer. Journal of Molecular Biology 374:106–120. doi:10.1016/j.jmb.2007.08.069

Voinnet O (2009) Origin, Biogenesis, and Activity of Plant MicroRNAs. Cell 136: 669–687. doi: 10.1016/j.cell.2009.01.046

Wende S, Platzer ED, Juehling F, Jühling F, Pütz J, Florentz C, Stadler PF, Mörl M (2014) Biological evidence for the world’s smallest tRNAs. Biochimie 100: 151–158. doi: 10.1016/j.biochi.2013.07.034

Werner S, Wollmann H, Schneeberger K, Weigel D (2010) Structure Determinants for Accurate Processing of miR172a in Arabidopsis thaliana. Current Biology 20: 42-48. doi:10.1016/j.cub.2009.10.073

Winter J, Jung S, Keller S, Gregory RI, Diederichs S (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nature Cell Biology 11: 228–234. doi: 10.1038/ncb0309-228

Yatime L, Maasch C, Hoeling K, Klussmann S, Andersen GR, Vater A (2015) Structural basis for the targeting of complement anaphylatoxin C5a using a mixed L-RNA/L-DNA aptamer. Nature Communications 6: 6481. doi:10.1038/ncomms7481

Zakov S, Goldberg Y, Elhadad M, Ziv-Ukelson M (2011) Rich parameterization improves RNA structure prediction. Journal of Computational Biology 18: 1525–1542. doi:10.1089/cmb.2011.0184

Zhang H, Kolb FA, Jaskiewicz L, Westhof E, Filipowicz W (2004) Single processing center models for human Dicer and bacterial RNase III. Cell 118: 57–68. doi:10.1016/j.cell.2004.06.017

Zok T, Popenda M, Szachniuk M (2014) MCQ4Structures to compute similarity of molecule structures. Central European Journal of Operations Research 22: 457–474. doi:10.1007/s10100-013-0296-5

Published
2017-03-04