Contributions of the Hfq protein to translation regulation by small noncoding RNAs binding to the mRNA coding sequence
Abstract
The bacterial Sm-like protein Hfq is involved in the regulation of translation by small noncoding RNAs (sRNAs), which affect bacterial cell’s response to changing environmental conditions. sRNAs bind to complementary sequences in their target mRNAs to activate or repress translation. The majority of sRNAs bind to the 5ʹ-untranslated mRNA regions. However, recent studies showed that sRNAs can also regulate translation by binding to the mRNA coding sequence, even far downstream of AUG start codon. This review aims to summarize our current understanding of the contributions of Hfq to translation regulation by sRNAs binding the mRNA coding sequence.References
Andrade, J. M., V. Pobre, A. M. Matos and C. M. Arraiano (2012). The crucial role of PNPase in the degradation of small RNAs that are not associated with Hfq. RNA 18(4): 844-855.
Belasco, J. G. (2010). All things must pass: contrasts and commonalities in eukaryotic and bacterial mRNA decay. Nat Rev Mol Cell Biol 11(7): 467-478.
Beyer, D., E. Skripkin, J. Wadzack and K. H. Nierhaus (1994). How the ribosome moves along the mRNA during protein synthesis. J Biol Chem 269(48): 30713-30717.
Bobrovskyy, M. and C. K. Vanderpool (2016). Diverse mechanisms of post-transcriptional repression by the small RNA regulator of glucose-phosphate stress. Mol Microbiol 99(2): 254-273.
Bohn, C., C. Rigoulay and P. Bouloc (2007). No detectable effect of RNA-binding protein Hfq absence in Staphylococcus aureus. BMC Microbiol 7: 10.
Bouvier, M., C. M. Sharma, F. Mika, K. H. Nierhaus and J. Vogel (2008). Small RNA binding to 5' mRNA coding region inhibits translational initiation. Mol Cell 32(6): 827-837.
Carpousis, A. J., B. F. Luisi and K. J. McDowall (2009). Endonucleolytic initiation of mRNA decay in Escherichia coli. Prog Mol Biol Transl Sci 85: 91-135.
Corcoran, C. P., D. Podkaminski, K. Papenfort, J. H. Urban, J. C. Hinton and J. Vogel (2012). Superfolder GFP reporters validate diverse new mRNA targets of the classic porin regulator, MicF RNA. Mol Microbiol 84(3): 428-445.
de Haseth, P. L. and O. C. Uhlenbeck (1980). Interaction of Escherichia coli host factor protein with oligoriboadenylates. Biochemistry 19(26): 6138-6146.
Desnoyers, G. and E. Masse (2012). Noncanonical repression of translation initiation through small RNA recruitment of the RNA chaperone Hfq. Genes Dev 26(7): 726-739.
Frohlich, K. S., K. Papenfort, A. A. Berger and J. Vogel (2012). A conserved RpoS-dependent small RNA controls the synthesis of major porin OmpD. Nucleic Acids Res 40(8): 3623-3640.
Gottesman, S. and G. Storz (2011). Bacterial small RNA regulators: versatile roles and rapidly evolving variations. Cold Spring Harb Perspect Biol 3(12).
Guisbert, E., V. A. Rhodius, N. Ahuja, E. Witkin and C. A. Gross (2007). Hfq modulates the sigmaE-mediated envelope stress response and the sigma32-mediated cytoplasmic stress response in Escherichia coli. J Bacteriol 189(5): 1963-1973.
Guo, M. S., T. B. Updegrove, E. B. Gogol, S. A. Shabalina, C. A. Gross and G. Storz (2014). MicL, a new sigmaE-dependent sRNA, combats envelope stress by repressing synthesis of Lpp, the major outer membrane lipoprotein. Genes Dev 28(14): 1620-1634.
Gutierrez, A., L. Laureti, S. Crussard, H. Abida, A. Rodriguez-Rojas, J. Blazquez, Z. Baharoglu, D. Mazel, F. Darfeuille, J. Vogel and I. Matic (2013). beta-Lactam antibiotics promote bacterial mutagenesis via an RpoS-mediated reduction in replication fidelity. Nat Commun 4: 1610.
Heidrich, N., A. Chinali, U. Gerth and S. Brantl (2006). The small untranslated RNA SR1 from the Bacillus subtilis genome is involved in the regulation of arginine catabolism. Mol Microbiol 62(2): 520-536.
Heidrich, N., I. Moll and S. Brantl (2007). In vitro analysis of the interaction between the small RNA SR1 and its primary target ahrC mRNA. Nucleic Acids Res 35(13): 4331-4346.
Huttenhofer, A. and H. F. Noller (1994). Footprinting mRNA-ribosome complexes with chemical probes. EMBO J 13(16): 3892-3901.
Ikeda, Y., M. Yagi, T. Morita and H. Aiba (2011). Hfq binding at RhlB-recognition region of RNase E is crucial for the rapid degradation of target mRNAs mediated by sRNAs in Escherichia coli. Mol Microbiol 79(2): 419-432.
Kawamoto, H., Y. Koide, T. Morita and H. Aiba (2006). Base-pairing requirement for RNA silencing by a bacterial small RNA and acceleration of duplex formation by Hfq. Mol Microbiol 61(4): 1013-1022.
Kroger, C., S. C. Dillon, A. D. Cameron, K. Papenfort, S. K. Sivasankaran, K. Hokamp, Y. Chao, A. Sittka, M. Hebrard, K. Handler, A. Colgan, P. Leekitcharoenphon, G. C. Langridge, A. J. Lohan, B. Loftus, S. Lucchini, D. W. Ussery, C. J. Dorman, N. R. Thomson, J. Vogel and J. C. Hinton (2012). The transcriptional landscape and small RNAs of Salmonella enterica serovar Typhimurium. Proc Natl Acad Sci U S A 109(20): E1277-1286.
Lalaouna, D., A. Morissette, M. C. Carrier and E. Masse (2015). DsrA regulatory RNA represses both hns and rbsD mRNAs through distinct mechanisms in Escherichia coli. Mol Microbiol 98(2): 357-369.
Lease, R. A. and M. Belfort (2000). Riboregulation by DsrA RNA: trans-actions for global economy. Mol Microbiol 38(4): 667-672.
Lease, R. A., M. E. Cusick and M. Belfort (1998). Riboregulation in Escherichia coli: DsrA RNA acts by RNA:RNA interactions at multiple loci. Proc Natl Acad Sci U S A 95(21): 12456-12461.
Lease, R. A. and S. A. Woodson (2004). Cycling of the Sm-like protein Hfq on the DsrA small regulatory RNA. J Mol Biol 344(5): 1211-1223.
Link, T. M., P. Valentin-Hansen and R. G. Brennan (2009). Structure of Escherichia coli Hfq bound to polyriboadenylate RNA. Proc Natl Acad Sci U S A 106(46): 19292-19297.
Majdalani, N., C. Cunning, D. Sledjeski, T. Elliott and S. Gottesman (1998). DsrA RNA regulates translation of RpoS message by an anti-antisense mechanism, independent of its action as an antisilencer of transcription. Proc Natl Acad Sci U S A 95(21): 12462-12467.
Mikulecky, P. J., M. K. Kaw, C. C. Brescia, J. C. Takach, D. D. Sledjeski and A. L. Feig (2004). Escherichia coli Hfq has distinct interaction surfaces for DsrA, rpoS and poly(A) RNAs. Nat Struct Mol Biol 11(12): 1206-1214.
Moller, T., T. Franch, P. Hojrup, D. R. Keene, H. P. Bachinger, R. G. Brennan and P. Valentin-Hansen (2002). Hfq: a bacterial Sm-like protein that mediates RNA-RNA interaction. Mol Cell 9(1): 23-30.
Morita, T., K. Maki and H. Aiba (2005). RNase E-based ribonucleoprotein complexes: mechanical basis of mRNA destabilization mediated by bacterial noncoding RNAs. Genes Dev 19(18): 2176-2186.
Otaka, H., H. Ishikawa, T. Morita and H. Aiba (2011). PolyU tail of rho-independent terminator of bacterial small RNAs is essential for Hfq action. Proc Natl Acad Sci U S A 108(32): 13059-13064.
Papenfort, K., M. Bouvier, F. Mika, C. M. Sharma and J. Vogel (2010). Evidence for an autonomous 5' target recognition domain in an Hfq-associated small RNA. Proc Natl Acad Sci U S A 107(47): 20435-20440.
Papenfort, K., D. Podkaminski, J. C. Hinton and J. Vogel (2012). The ancestral SgrS RNA discriminates horizontally acquired Salmonella mRNAs through a single G-U wobble pair. Proc Natl Acad Sci U S A 109(13): E757-764.
Papenfort, K., Y. Sun, M. Miyakoshi, C. K. Vanderpool and J. Vogel (2013). Small RNA-mediated activation of sugar phosphatase mRNA regulates glucose homeostasis. Cell 153(2): 426-437.
Peng, Y., J. E. Curtis, X. Fang and S. A. Woodson (2014). Structural model of an mRNA in complex with the bacterial chaperone Hfq. Proc Natl Acad Sci U S A 111(48): 17134-17139.
Peng, Y., T. J. Soper and S. A. Woodson (2014). Positional effects of AAN motifs in rpoS regulation by sRNAs and Hfq. J Mol Biol 426(2): 275-285.
Pfeiffer, V., K. Papenfort, S. Lucchini, J. C. Hinton and J. Vogel (2009). Coding sequence targeting by MicC RNA reveals bacterial mRNA silencing downstream of translational initiation. Nat Struct Mol Biol 16(8): 840-846.
Pfeiffer, V., A. Sittka, R. Tomer, K. Tedin, V. Brinkmann and J. Vogel (2007). A small non-coding RNA of the invasion gene island (SPI-1) represses outer membrane protein synthesis from the Salmonella core genome. Mol Microbiol 66(5): 1174-1191.
Prevost, K., H. Salvail, G. Desnoyers, J. F. Jacques, E. Phaneuf and E. Masse (2007). The small RNA RyhB activates the translation of shiA mRNA encoding a permease of shikimate, a compound involved in siderophore synthesis. Mol Microbiol 64(5): 1260-1273.
Rhodius, V. A., W. C. Suh, G. Nonaka, J. West and C. A. Gross (2006). Conserved and variable functions of the sigmaE stress response in related genomes. PLoS Biol 4(1): e2.
Rice, J. B. and C. K. Vanderpool (2011). The small RNA SgrS controls sugar-phosphate accumulation by regulating multiple PTS genes. Nucleic Acids Res 39(9): 3806-3819.
Rutten, L., J. P. Mannie, C. M. Stead, C. R. Raetz, C. M. Reynolds, A. M. Bonvin, J. P. Tommassen, M. R. Egmond, M. S. Trent and P. Gros (2009). Active-site architecture and catalytic mechanism of the lipid A deacylase LpxR of Salmonella typhimurium. Proc Natl Acad Sci U S A 106(6): 1960-1964.
Salim, N. N., M. A. Faner, J. A. Philip and A. L. Feig (2012). Requirement of upstream Hfq-binding (ARN)x elements in glmS and the Hfq C-terminal region for GlmS upregulation by sRNAs GlmZ and GlmY. Nucleic Acids Res 40(16): 8021-8032.
Salim, N. N. and A. L. Feig (2010). An upstream Hfq binding site in the fhlA mRNA leader region facilitates the OxyS-fhlA interaction. PLoS One 5(9).
Salvail, H., M. P. Caron, J. Belanger and E. Masse (2013). Antagonistic functions between the RNA chaperone Hfq and an sRNA regulate sensitivity to the antibiotic colicin. EMBO J 32(20): 2764-2778.
Sauer, E., S. Schmidt and O. Weichenrieder (2012). Small RNA binding to the lateral surface of Hfq hexamers and structural rearrangements upon mRNA target recognition. Proc Natl Acad Sci U S A 109(24): 9396-9401.
Sauer, E. and O. Weichenrieder (2011). Structural basis for RNA 3'-end recognition by Hfq. Proc Natl Acad Sci U S A 108(32): 13065-13070.
Schumacher, M. A., R. F. Pearson, T. Moller, P. Valentin-Hansen and R. G. Brennan (2002). Structures of the pleiotropic translational regulator Hfq and an Hfq-RNA complex: a bacterial Sm-like protein. EMBO J 21(13): 3546-3556.
Silvaggi, J. M., J. B. Perkins and R. Losick (2005). Small untranslated RNA antitoxin in Bacillus subtilis. J Bacteriol 187(19): 6641-6650.
Sittka, A., S. Lucchini, K. Papenfort, C. M. Sharma, K. Rolle, T. T. Binnewies, J. C. Hinton and J. Vogel (2008). Deep sequencing analysis of small noncoding RNA and mRNA targets of the global post-transcriptional regulator, Hfq. PLoS Genet 4(8): e1000163.
Sledjeski, D. D., A. Gupta and S. Gottesman (1996). The small RNA, DsrA, is essential for the low temperature expression of RpoS during exponential growth in Escherichia coli. EMBO J 15(15): 3993-4000.
Sledjeski, D. D., C. Whitman and A. Zhang (2001). Hfq is necessary for regulation by the untranslated RNA DsrA. J Bacteriol 183(6): 1997-2005.
Sobrero, P. and C. Valverde (2012). The bacterial protein Hfq: much more than a mere RNA-binding factor. Crit Rev Microbiol 38(4): 276-299.
Sonnleitner, E. and U. Blasi (2014). Regulation of Hfq by the RNA CrcZ in Pseudomonas aeruginosa carbon catabolite repression. PLoS Genet 10(6): e1004440.
Soper, T. J., K. Doxzen and S. A. Woodson (2011). Major role for mRNA binding and restructuring in sRNA recruitment by Hfq. RNA 17(8): 1544-1550.
Soper, T. J. and S. A. Woodson (2008). The rpoS mRNA leader recruits Hfq to facilitate annealing with DsrA sRNA. RNA 14(9): 1907-1917.
Storz, G., J. A. Opdyke and A. Zhang (2004). Controlling mRNA stability and translation with small, noncoding RNAs. Curr Opin Microbiol 7(2): 140-144.
Takyar, S., R. P. Hickerson and H. F. Noller (2005). mRNA helicase activity of the ribosome. Cell 120(1): 49-58.
Tree, J. J., S. Granneman, S. P. McAteer, D. Tollervey and D. L. Gally (2014). Identification of bacteriophage-encoded anti-sRNAs in pathogenic Escherichia coli. Mol Cell 55(2): 199-213.
Tsui, H. C., G. Feng and M. E. Winkler (1997). Negative regulation of mutS and mutH repair gene expression by the Hfq and RpoS global regulators of Escherichia coli K-12. J Bacteriol 179(23): 7476-7487.
Updegrove, T. B., A. Zhang and G. Storz (2016). Hfq: the flexible RNA matchmaker. Curr Opin Microbiol 30: 133-138.
Urban, J. H. and J. Vogel (2007). Translational control and target recognition by Escherichia coli small RNAs in vivo. Nucleic Acids Res 35(3): 1018-1037.
Urban, J. H. and J. Vogel (2008). Two seemingly homologous noncoding RNAs act hierarchically to activate glmS mRNA translation. PLoS Biol 6(3): e64.
Valentin-Hansen, P., M. Eriksen and C. Udesen (2004). The bacterial Sm-like protein Hfq: a key player in RNA transactions. Mol Microbiol 51(6): 1525-1533.
Vanderpool, C. K. and S. Gottesman (2004). Involvement of a novel transcriptional activator and small RNA in post-transcriptional regulation of the glucose phosphoenolpyruvate phosphotransferase system. Mol Microbiol 54(4): 1076-1089.
Vogel, J. and B. F. Luisi (2011). Hfq and its constellation of RNA. Nat Rev Microbiol 9(8): 578-589.
Vytvytska, O., I. Moll, V. R. Kaberdin, A. von Gabain and U. Blasi (2000). Hfq (HF1) stimulates ompA mRNA decay by interfering with ribosome binding. Genes Dev 14(9): 1109-1118.
Waters, L. S. and G. Storz (2009). Regulatory RNAs in bacteria. Cell 136(4): 615-628.
Wright, P. R., A. S. Richter, K. Papenfort, M. Mann, J. Vogel, W. R. Hess, R. Backofen and J. Georg (2013). Comparative genomics boosts target prediction for bacterial small RNAs. Proc Natl Acad Sci U S A 110(37): E3487-3496.
Wroblewska, Z. and M. Olejniczak (2016). Hfq assists small RNAs in binding to the coding sequence of ompD mRNA and in rearranging its structure. RNA.
Zhang, A., K. M. Wassarman, J. Ortega, A. C. Steven and G. Storz (2002). The Sm-like Hfq protein increases OxyS RNA interaction with target mRNAs. Mol Cell 9(1): 11-22.
Acta Biochimica Polonica is an OpenAccess quarterly and publishes four issues a year. All contents are distributed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY 4.0) license. Everybody may use the content following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
Copyright for all published papers © stays with the authors.
Copyright for the journal: © Polish Biochemical Society.