Hypothetical orchestrated cooperation between dopaminergic and kinin receptors for the regulation of common functions
Abstract
The G protein-coupled receptors (GPCRs), one of the largest protein families, are essential components of the most commonly used signal-transduction systems in cells. These receptors, often using common pathways, may cooperate in the regulation of signal transmission to the cell nucleus. Recent scientific interests increasingly focus on the cooperation between these receptors, particularly in a context of their oligomerization, e.g. the formation of dimers that are able to change characteristic signaling of each receptor. Numerous studies on kinin and dopamine receptors which belong to this family of receptors have shown new facts demonstrating their direct interactions with other GPCRs. In this review, current knowledge on signaling pathways and oligomerization of these receptors has been summarized. Owing to the fact that kinin and dopamine receptors are widely expressed in cell membranes where they act as mediators of numerous common physiological processes, the information presented here sheds new light on a putative crosstalk of these receptors and provides more comprehensive understanding of possible direct interactions that may change their functions. The determination of such interactions may be useful for the development of new targeted therapeutic strategies against many disorders in which kinin and dopamine receptors are involved.
References
Abadir PM, Periasamy A, Carey RM, Siragy HM (2006) Angiotensin II type 2 receptor-bradykinin B2 receptor functional heterodimerization. Hypertension 48: 316-322. http://dx.doi.org/10.1161/01.HYP.0000228997.88162.a8
AbdAlla S, Zaki E, Lother H, Quitterer U (1999) Involvement of the amino terminus of the B(2) receptor in agonist-induced receptor dimerization. J Biol Chem 274: 26079-26084. http://dx.doi.org/10.1074/jbc.274.37.26079
AbdAlla S, Lother H, Quitterer U (2000) AT1-receptor heterodimers show enhanced G-protein activation and altered receptor sequestration. Nature 407: 94-98. http://dx.doi.org/10.1038/35024095
AbdAlla S, Abdel-Baset A, Lother H, el Massiery A, Quitterer U (2005) Mesangial AT1/B2 receptor heterodimers contribute to angiotensin II hyperresponsiveness in experimental hypertension. J Mol Neurosci 26: 185-192. http://dx.doi.org/10.1385/JMN/26:02:185
Agnati LF, Ferre S, Lluis C, Franco R, Fuxe K (2003) Molecular mechanisms and therapeutical implications of intramembrane receptor/receptor interactions among heptahelical receptors with examples from the striatopallidal GABA Neurons. Pharmacol Rev 55: 509-550. http://dx.doi.org/10.1124/pr.55.3.2
Anderson GR, Cao Y, Davidson S, Truong HV, Pravetoni M, Thomas MJ, Wickman K, Giesler GJ Jr, Martemyanov KA (2010) R7BP complexes with RGS9-2 and RGS7 in the striatum differentially control motor learning and locomotor responses to cocaine. Neuropsychopharmacology 35: 1040-1050. http://dx.doi.org/10.1038/npp.2009.212
Austin CE, Faussner A, Robinson HE, Chakravarty S, Kyle DJ, Bathon JM, Proud D (1997) Stable expression of the human kinin B1 receptor in Chinese hamster ovary cells. J Biol Chem 272: 11420-11425. http://dx.doi.org/10.1074/jbc.272.17.11420
Bai B, Liu L, Zhang N, Wang C, Jiang Y, Chen J (2014) Heterodimerization of human apelin and bradykinin 1 receptors: novel signal transduction characteristics. Cell Signal 26: 1549-1559. http://dx.doi.org/10.1016/j.cellsig.2014.03.022
Barki-Harrington L, Bookout AL, Wang G, Lamb ME, Leeb-Lundberg LM, Daaka Y (2003) Requirement for direct cross-talk between B1 and B2 kinin receptors for the proliferation of androgen-insensitive prostate cancer PC3 cells. Biochem J 371: 581-587. http://dx.doi.org/10.1042/BJ20021708
Beaulieu JM, Gainetdinov RR (2005) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63: 182-217. http://dx.doi.org/10.1124/pr.110.002642.
Beaulieu JM, Espinoza S, Gainetdinov RR (2015) Dopamine receptors – IUPHAR Review 13. Brit J Pharmacol 172: 1-23. http://dx.doi.org/10.1111/bph.12906
Ben-Shmuel S, Danon A, Fleisher-Berkovich S (2013) Bradykinin decreases nitric oxide release from microglia via inhibition of cyclic adenosine monophosphate signaling. Peptides 40: 133-140. http://dx.doi.org/10.1016/j.peptides.2013.01.006
Blais C Jr, Marceau F, Roleau JL, Adam A (2000) The kallikrein-kininogen-kinin system: lessons for the quantification of endogenous kinins. Peptides 21: 1903-1940. http://dx.doi.org/10.1016/S0196-9781(00)00348-X
Blaukat A (2003) Structure and signaling pathways of kinin receptors. Andrologia 35: 17-23. http://dx.doi.org/10.1046/j.1439-0272.2003.00533.x
Borroto-Escuela DO, Romero-Fernandez W, Tarakanov AO, Marcellino D,
Ciruela F, Agnati LF, Fuxe K (2010) Dopamine D2 and 5-hydroxytryptamine 5-HT(₂A) receptors assemble into functionally interacting heteromers. Biochem Biophys Res Commun 401: 605-610. http://dx.doi.org/10.1016/j.bbrc.2010.09.110
Borroto-Escuela DO, Van Craenenbroeck K, Romero-Fernandez W, Guidolin D, Woods AS, Rivera A, Haegeman G, Agnati LF, Tarakanov AO,
Fuxe K (2011) Dopamine D2 and D4 receptor heterodimerization and its allosteric receptor-receptor interactions. Biochem Biophys Res Commun 404: 928-934. http://dx.doi.org/10.1016/j.bbrc.2010.12.083
Borroto-Escuela DO, Pintsuk J, Schafer T, Friedland K, Ferraro L, Tanganelli S, Liu F, Fuxe K (2016) Multiple D2 heteroreceptor complexes: new targets for treatment of schizophrenia. Ther Adv Psychopharmacol 6:77-94. http://dx.doi.org/10.1177/2045125316637570
Bouvier M (2001) Oligomerization of G-protein-coupled transmitter receptors. Nat Rev Neurosci 2: 274-286. http://dx.doi.org/10.1038/35067575
Bulenger S, Marullo S, Bouvier M (2005) Emerging role of homo- and heterodimerization in G-protein-coupled receptor biosynthesis and maturation. Trends Pharmacol Sci 26: 131-137. http://dx.doi.org/10.1016/j.tips.2005.01.004
Camps M, Carozzi A, Schnabel P, Scheer A, Parker PJ, Gierschik P (1992) Isozyme-selective stimulation of phospholipase C-beta 2 by G-protein beta gamma-subunits. Nature 360: 684-686. http://dx.doi.org/10.1038/360684a0
Canals M, Marcellino D, Fanelli F, Ciruela F, de Benedetti P, Goldberg SR, Neve K, Fuxe K, Agnati LF, Woods AS, Ferre S, Lluis C, Bouvier M, Franco R (2003) Adenosine A2A-dopamine D2 receptor-receptor heterodimerization: qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer. J Biol Chem 278: 46741-46749. http://dx.doi.org/10.1074/jbc.M306451200
De Brito Gariepy HDB, Carayon P, Ferrari B, Couture R (2010) Contribution of the central dopaminergic system in the anti-hypertensive effect of kinin B1 receptor antagonists in two rat models of hypertension. Neuropeptides 44: 191-198. http://dx.doi.org/10.1016/j.npep.2009.12.011
Del'guidice T, Lemasson M, Beaulieu JM (2011) Role of beta-arrestin 2 downstream of dopamine receptors in the basal ganglia. Front Neuroanat 5: 58. http://dx.doi.org/10.3389/fnana.2011.00058
Dupre DJ, Hebert TE (2006) Biosynthesis and trafficking of seven transmembrane receptor signalling complexes. Cell Signal 18: 1549-1559. http://dx.doi.org/10.1016/j.cellsig.2006.03.009
Dziedzicka-Wasylewska M, Faron-Górecka A, Andrecka J, Polit A, Kuśmider M, Wasylewski Z (2006) Fluorescence studies reveal heterodimerization of dopamine D1 and D2 receptors in the plasma membrane. Biochemistry 45: 8751–8759. http://dx.doi.org/10.1021/bi060702m
Enquist J, Sanden C, Skroder C, Mathis SA, Leeb-Lundberg LM (2014) Kinin-stimulated B1 receptor signaling depends on receptor endocytosis whereas B2 receptor signaling does not. Neurochem Res 39: 1037-1047. http://dx.doi.org/10.1007/s11064-013-1126-9
Espinoza S, Salahpour A, Masri B, Sotnikova TD, Messa M, Barak LS, Caron MG, Gainetdinov RR (2011) Functional interaction between trace amine-associated receptor 1 and dopamine D2 receptor. Mol Pharmacol 80: 416-425. http://dx.doi.org/10.1124/mol.111.073304
Ferrada C, Ferre S, Casado V, Cortes A, Justinova Z, Barnes C, Canela EI, Goldberg SR, Leurs R, Lluis C, Franco R (2008) Interactions between histamine H3 and dopamine D2 receptors and the implications for striatal function. Neuropharmacology 55: 190-197. http://dx.doi.org/10.1016/j.neuropharm.2008.05
Ferrada C, Moreno E, Casado V, Bongers G, Cortes A, Mallol J, Canela EI, Leurs R, Ferre S, Lluis C, Franco R (2009) Marked changes in signal transduction upon heterodimerization of dopamine D1 and histamine H3 receptors. Br J Pharmacol 157: 64-75. http://dx.doi.org/10.1111/j.1476-5381.2009.00152.x
Ferre S, Casado V, Devi LA, Filizola M, Jockers R, Lohse MJ, Milligan G, Pin JP, Guitart X (2014) G protein-coupled receptor oligomerization revisited: functional and pharmacological perspectives. Pharmacol Rev 66: 413-434. http://dx.doi.org/10.1124/pr.113.008052
Figueroa CD, Ehrenfeld P, Bhoola KD (2012) Kinin receptors as targets for cancer therapy. Exp Opin Ther Targets 16: 299-312. http://dx.doi.org/10.1517/14728222.2012.662957
Ghosh E, Kumari P, Jaiman D, Shukla AK (2015) Methodological advances: the unsung heroes of the GPCR structural revolution. Nat Rev Mol Cell Biol 16: 69-81. http://dx.doi.org/10.1038/nrm3933
Gildea JJ, Wang X, Shah N, Tran H, Spinosa M, Van Sciver R, Sasaki M, Yatabe J, Carey RM, Jose PA, Felder RA (2012) Dopamine and angiotensin type 2 receptors cooperatively inhibit sodium transport in human renal proximal tubule cells. Hypertension 60: 396-403. http://dx.doi.org/10.1161/HYPERTENSIONAHA.112.194175
Gines S, Hillion J, Torvinen M, Le Crom S, Casado V, Canela EI, Rondin S, Lew JY, Watson S, Zoli M, Agnati LF, Verniera P, Lluis C, Ferre S, Fuxe K, Franco R (2000) Dopamine D1 and adenosine A1 receptors form functionally interacting heteromeric complexes. Proc Natl Acad Sci USA 97: 8606-8611. http://dx.doi.org/10.1073/pnas.150241097
Gonzalez S, Rangel-Barajas C, Peper M, Lorenzo R, Moreno E, Ciruela F Borycz J, Ortiz J, Lluis C, Franco R, McCormick PJ, Volkow ND, Rubinstein M, Floran B, Ferre S (2012a) Dopamine D4 receptor, but not the ADHD-associated D4.7 variant, forms functional heteromers with the dopamine D2S receptor in the brain. Mol Psychiatry 17: 650-662. http://dx.doi.org/10.1038/mp.2011.93
Gonzalez S, Moreno-Delgado D, Moreno E, Perez-Capote K, Franco R, Mallol J, Cortes A, Casado V, Lluis C, Ortiz J, Ferre S, Canela E, McCormick PJ (2012b) Circadian-related heteromerization of adrenergic and dopamine D(4) receptors modulates melatonin synthesis and release in the pineal gland. PLoS Biol 10: e1001347. http://dx.doi.org/10.1371/journal.pbio.1001347
Greengard P (2001) The neurobiology of slow synaptic transmission. Science 294: 1024-1030. http://dx.doi.org/10.1126/science.294.5544.1024
Guevara-Lora I, Florkowska M, Kozik A (2009) Bradykinin-related peptides up-regulate the expression of kinin B1 and B2 receptor genes in human promonocytic cell line U937. Acta Biochim Pol 56: 515-522.
Guevara-Lora I, Majkucinska M, Barbasz A, Faussner A, Kozik A (2011) Kinin generation from exogenous kininogens at the surface of retinoic acid-differentiated human neuroblastoma IMR-32 cells after stimulation with interferon-γ. Peptides 32: 1193-1200. http://dx.doi.org/10.1016/j.peptides.2011.04.019
Guevara-Lora I (2012) Kinin-mediated inflammation in neurodegenerative disorders. Neurochem Int 61: 72-78. http://dx.doi.org/10.1016/j.neuint.2012.04.013
Guevara-Lora I, Blonska B, Faussner A, Kozik A (2013) Kinin-generating cellular model obtained from human glioblastoma cell line U373. Acta Biochim Pol 60: 299-305.
Han Y, Moreira IS, Urizar E, Weinstein H, Javitch JA (2009) Allosteric communication between protomers of dopamine class A GPCR dimers modulates activation. Nat Chem Biol 5: 688-695. http://dx.doi.org/10.1038/nchembio.199
Hisahara S, Shimohama S (2011) Dopamine receptors and Parkinson’s disease. Int J Med Chem 2011: 403039. http://dx.doi.org/10.1155/2011/403039
Hong W, Nuwayhid SJ, Werling LL (2004) Modulation of bradykinin-induced calcium changes in SH-SY5Y cells by neurosteroids and sigma receptor ligands via a shared mechanism. Synapse 54: 102-110. http://dx.doi.org/10.1002/syn.20069
Joseph K, Kaplan AP (2005) Formation of bradykinin: a major contribution to the innate inflammatory response. Adv Immunol 86: 159-208. http://dx.doi.org/10.1016/S0065-2776(04)86005-X
Kang DS, Ryberg K, Morgelin M, Leeb-Lundberg LMF (2004) Spontaneous formation of a proteolytic B1 and B2 bradykinin receptor complex with enhanced signaling capacity. J Biol Chem 279: 22102–22107. http://dx.doi.org/10.1074/jbc.M402572200
Kang DS, Gustafsson C, Morgelin M, Leeb-Lundberg LM (2005) B1 bradykinin receptor homo-oligomers in receptor cell surface expression and signaling: effects of receptor fragments. Mol Pharmacol 67: 309-318. http://dx.doi.org/10.1124/mol.104.002840
Kearn CS, Blake-Palmer K, Daniel E, Mackie K, Glass M (2005) Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors enhances heterodimer formation: a mechanism for receptor cross-talk? Mol Pharmacol 67: 1697-1704. http://dx.doi.org/10.1124/mol.104.006882
Kim KM, Valenzano KJ, Robinson SR, Yao WD, Barak LS, Caron MG (2001) Differential regulation of the dopamine D2 and D3 receptors by G protein-coupled receptor kinases and beta-arrestins. J Biol Chem 276: 37409-37414. http://dx.doi.org/10.1074/jbc.M106728200
Lavine N, Ethier N, Oak JN, Pei L, Liu F, Trieu P, Rebois RV, Bouvier M, Hebert TE, Van Tol HH (2002) G protein-coupled receptors form stable complexes with inwardly rectifying potassium channels and adenylyl cyclase. J Biol Chem 277: 46010-46019. http://dx.doi.org/10.1074/jbc.M205035200
Lee FJ, Xue S, Pei L, Vukusic B, Chery N, Wang Y, Wang YT, Niznik HB, Yu XM, Liu F (2002) Dual regulation of NMDA receptor functions by direct protein-protein interactions with the dopamine D1 receptor. Cell 111: 219-230. http://dx.doi.org/10.1016/S0092-8674(02)00962-5
Lee SP, So CH, Rashid AJ, Varghese G, Cheng R, Lanca AJ, O’Dowd BF, George SR (2004) Dopamine D1 and D2 receptor co-activation generates a novel phospholipase C-mediated calcium signal. J Biol Chem 279: 35671-35678. http://dx.doi.org/10.1074/jbc.M401923200
Leeb-Lundberg LM, Marceau F, Muller- Esterl W, Pettibone DJ, Zuraw BL (2005) International union of pharmacology. XLV. Classification of the kinin receptor family: from molecular mechanism to pathophysiological consequences. Pharmacol Rev 57: 27-77. http://dx.doi.org/10.1124/pr.57.1.2
Leo D, Mus L, Espinoza S, Hoener MC, Sotnikova TD, Gainetdinov RR (2014) Taar1-mediated modulation of presynaptic dopaminergic neurotransmission: role of D2 dopamine autoreceptors. Neuropharmacology 81: 283-291. http://dx.doi.org/10.1016/j.neuropharm.2014.02.007
Li S, Wong AH, Liu F (2014) Ligand-gated ion channel interacting proteins and their role in neuroprotection. Front Cell Neurosci 8: 125. http://dx.doi.org/10.3389/fncel.2014.00125
Liu XY, Chu XP, Mao LM, Wang M, Lan HX, Li MH, Zhang GC, Parelkar NK, Fibuch EE, Haines M, Neve KA, Liu F, Xiong ZG, Wang JQ (2006) Modulation of D2R-NR2B interactions in response to cocaine. Neuron 52: 897-909. http://dx.doi.org/10.1016/j.neuron.2006.10.011
Łukasiewicz S, Faron-Górecka A, Dobrucki J, Polit A, Dziedzicka-Wasylewska M (2009) Studies on the role of the receptor protein motifs possibly involved in electrostatic interactions on the dopamine D1 and D2 receptor oligomerization. FEBS J 276: 760-775. http://dx.doi.org/10.1111/j.1742-4658.2008.06822.x
Łukasiewicz S, Polit A, Kędracka-Krok S, Wędzony K, Maćkowiak M, Dziedzicka-Wasylewska M (2010) Hetero-dimerization of serotonin 5-HT(2A) and dopamine D(2) receptors. Biochim Biophys Acta 1803: 1347-1358. http://dx.doi.org/10.1016/j.bbamcr.2010.08.010
Marceau F, Sabourin T, Houle S, Fortin JP, Petitclerc E, Molinaro G, Adam A (2002) Kinin receptors: functional aspects. Int Immunopharmacol 2: 1729–1739. http://dx.doi.org/10.1016/S1567-5769(02)00189-3
Marceau F, Bouthillier J, Houle S, Sabourin T, Forin JP, Morissette G, Lodge R, Fortin S, Gaudreault RC, Bawolak MT, Koumbadinga GA, Roy C,
Charest-Morin X, Gera L (2013) Bradykinin receptors: agonists, antagonist, expression, signaling and adaptation to sustained stimulation. J Angioedema 1: 1-9.
Marcellino D, Ferre S, Casado V, Cortes A, Le Foll B, Mazzola C, Drago F, Saur O, Stark H, Soriano A, Barnes C, Goldberg SR, Lluis C, Fuxe K, Franco R (2008) Identification of dopamine D1-D3 receptor heteromers. Indications for a role of synergistic D1-D3 receptor interactions in the striatum. J Biol Chem 283: 26016-26025. http://dx.doi.org/10.1074/jbc.M710349200
Martinez-Pinilla E, Rodriguez-Perez AI, Navarro G, Aguinaga D, Moreno E, Lanciego JL, Labandeira-Garcia JL, Franco R (2015) Dopamine D2 and angiotensin II type 1 receptors form functional heteromers in rat striatum. Biochem Pharmacol 96: 131-142. http://dx.doi.org/10.1016/j.bcp.2015.05.006
Maurice P, Kamal M, Jockers R (2011) Asymmetry of GPCR oligomers supports their functional relevance. Trends Pharmacol Sci 32: 514-520. http://dx.doi.org/10.1016/j.tips.2011.05.006
Meunier CN, Callebert J, Cancela JM, Fossier P (2015) Effect of dopaminergic D1 receptors on plasticity is dependent of serotoninergic 5-HT1A receptors in L5-pyramidal neurons of the prefrontal cortex. PLoS One 10: e0120286. http://dx.doi.org/10.1371/journal.pone.0120286
Michineau S, Alhenc-Gelas F, Rajerison RM (2006) Human bradykinin B2 receptor sialylation and N-glycosylation participate with disulfide bonding in surface receptor dimerization. Biochemistry 45: 2699-2707. http://dx.doi.org/10.1021/bi051674v
Milligan G (2009) G protein-coupled receptor hetero-dimerization: contribution to pharmacology and function. Br J Pharmacol 158: 5-14. http://dx.doi.org/10.1111/j.1476-5381.2009.00169.x
Milligan G (2013) The prevalence, maintenance, and relevance of G protein–coupled receptor oligomerization. Mol Pharmacol 84: 158-169. http://dx.doi.org/10.1124/mol.113.084780
Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78: 189-225.
Morand-Contant M, Anand-Srivastava MB, Couture R (2010) Kinin B1 receptor upregulation by angiotensin II and endothelin-1 in rat vascular smooth muscle cells: receptors and mechanisms. Am J Physiol Heart Circ Physiol 299: H1625-1632. http://dx.doi.org/10.1152/ajpheart.00735.2009
Moreau ME, Garbacki N, Molinaro G, Brown NJ, Marceau F, Adam A (2005) The kallikrein-kinin system: current and future pharmacological targets. J Pharmacol Sci 99: 6-38. http://dx.doi.org/10.1254/jphs.srj05001x
Moreno E, Vaz SH, Cai N-S, Ferrada C, Quiroz C, Barodia S, Kabbani N, Canela EI, McCormick PJ, Lluis C, Franco R, Ribeiro JA, Sebastiao AM,
Ferre S (2011a) Dopamine-galanin receptor heteromers modulate cholinergic neurotransmission in the rat ventral hippocampus. J Neurosci 31: 7412-7423. http://dx.doi.org/10.1523/JNEUROSCI.0191-11.2011
Moreno E, Hoffmann H, Gonzalez-Sepulveda M, Navarro G, Casado V, Cortes A, Mallol J, Vignes M, McCormick PJ, Canela EI, Lluis C, Moratalla R, Ferre S, Ortiz J, Franco R (2011b) Dopamine D1-histamine H3 receptor heteromers provide a selective link to MAPK signaling in GABAergic neurons of the direct striatal pathway. J Biol Chem 286: 5846-5854. http://dx.doi.org/10.1074/jbc.M110.161489
Nai Q, Li S, Wang SH, Liu J, Lee FJ, Frankland PW, Liu F (2010) Uncoupling the D1-N-methyl-D-aspartate (NMDA) receptor complex promotes NMDA dependent long-term potentiation and working memory. Biol Psychiatry 67: 246-254. http://dx.doi.org/10.1016/j.biopsych.2009.08.011
O’Dowd BF, Nguyen T, Ji X, George SR (2013) D(5) dopamine receptor carboxyl tail involved in D(5)-D(2) heteromer formation. Biochem Biophys Res Commun 431: 586-589. http://dx.doi.org/10.1016/j.bbrc.2012.12.139
Perreault ML, Hasbi A, O'Dowd BF, George SR (2014a) Heteromeric dopamine receptor signaling complexes: emerging neurobiology and disease relevance. Neuropsychopharmacology 39: 156-168. http://dx.doi.org/10.1038/npp.2013.148
Peterson SM, Pack TF, Wilkins AD, Urs NM, Urban DJ, Bass CE, Lichtarge O, Caron MG (2015) Elucidation of G-protein and β-arrestin functional selectivity at the dopamine D2 receptor. Proc Natl Acad Sci U S A 112: 7097-7102. http://dx.doi.org/10.1073/pnas.1502742112
Phagoo SB, Poole S, Leeb-Lundberg LM (1999) Autoregulation of bradykinin receptors: agonists in the presence of interleukin-1beta shift the repertoire of receptor subtypes from B2 to B1 in human lung fibroblasts. Mol Pharmacol 56: 325-333. http://dx.doi.org/10.1124/mol.56.2.325
Philip F, Sengupta P, Scarlata S (2007) Signaling through a G protein-coupled receptor and its corresponding G protein follows a stoichiometrically limited model. J Biol Chem 282: 19203-19216. http://dx.doi.org/10.1074/jbc.M701558200
Polito M, Guiot E, Gangarossa G, Longueville S, Doulazmi M, Valjent E, Herve D, Girault JA, Paupardin-Tritsch D, Castro LR, Vincent P (2015) Selective effects of PDE10A inhibitors on striatopallidal neurons require phosphatase inhibition by DARPP-32. eNeuro 2: 1-15. http://dx.doi.org/10.1523/ENEURO.0060-15.2015
Pou C, Mannoury la Cour C, Stoddart LA, Millan MJ, Milligan G (2012) Functional homomers and heteromers of dopamine D2L and D3 receptors co-exist at the cell surface. J Biol Chem 287: 8864-8878. http://dx.doi.org/10.1074/jbc.M111.326678
Prado GN, Taylor L, Zhou X, Ricupero D, Mierke DF, Polgar P (2002) Mechanisms regulating the expression, self maintenance, and signaling-function of the bradykinin B2 and B1 receptors. J Cell Physiol 193: 275-286. http://dx.doi.org/10.1002/jcp.10175
Prinster SC, Hague C, Hall RA (2005) Heterodimerization of G protein-coupled receptors: specificity and functional significance. Pharmacol Rev 57: 289-298. http://dx.doi.org/10.1124/pr.57.3.1
Quitterer U, Pohl A, Langer A, Koller S, AbdAlla S (2011) A cleavable signal peptide enhances cell surface delivery and heterodimerization of Cerulean-tagged angiotensin II AT1 and bradykinin B2 receptor. Biochem Biophys Res Commun 409: 544-549. http://dx.doi.org/10.1016/j.bbrc.2011.05.041
Rocheville M, Lange DC, Kumar U, Patel SC, Patel RC, Patel YC (2000) Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. Science 288: 154-157. http://dx.doi.org/10.1126/science.288.5463.154
Sanden C, Leeb-Lundberg LM (2013) Kinin B1 receptor homo-oligomerization is required for receptor trafficking to the cell surface. Int Immunopharmacol 15: 121-128. http://dx.doi.org/10.1016/j.intimp.2012.11.012
Sassone-Corsi P (2012) The cyclic AMP pathway. Cold Spring Harb Perspect Biol 4: a011148. http://dx.doi.org/10.1101/cshperspect.a011148
Scarselli M, Novi F, Schallmach E, Lin R, Baragli A, Colzi A, Griffon N, Corsini G, Sokoloff P, Levenson R, Vogel Z, Maggfio R (2001) D2/D3 dopamine receptor heterodimers exhibit unique functional properties. J Biol Chem 276: 30308-30314. http://dx.doi.org/10.1074/jbc.M102297200
Shafaroodi H, Oveisi S, Hosseini M, Niknahad H, Moezi L (2015) The effect of acute aripiprazole treatment on chemically and electrically induced seizures in mice: The role of nitric oxide. Epilepsy Behav 48: 35-40. http://dx.doi.org/10.1016/j.yebeh.2015.05.018
Sharma JN (2014) Basic and clinical aspects of bradykinin receptor antagonists. Prog Drug Res 69: 1-14. http://dx.doi.org/10.1007/978-3-319-06683-7_1
Sharma R, Randhawa PK, Singh N, Jaggi AS (2015) Bradykinin in ischemic conditioning-induced tissue protection: Evidences and possible mechanisms. Eur J Pharmacol 768: 58-70. http://dx.doi.org/10.1016/j.ejphar.2015.10.029
Shenoy SK, Lefkowitz RJ (2011) β-Arrestin-mediated receptor trafficking and signal transduction. Trends Pharmacol Sci 32: 521-533. http://dx.doi.org/10.1016/j.tips.2011.05.002
Smith NJ, Milligan G (2010) Allostery at G protein-coupled receptor homo- and heteromers: uncharted pharmacological landscapes. Pharmacol Rev 62: 701-725. http://dx.doi.org/10.1124/pr.110.002667
So CH, Verma V, Alijaniaram M, Cheng R, Rashid AJ, O’Dowd BF, George SR (2009) Calcium signaling by dopamine D5 receptor and D5-D2 receptor hetero-oligomers occurs by a mechanism distinct from that for dopamine. D1-D2 receptor hetero-oligomers. Mol Pharmacol 75: 843-854. http://dx.doi.org/10.1124/mol.108.051805
Tadagaki K, Jockers R, Kamal M (2012) History and biological significance of GPCR heteromerization in the neuroendocrine system. Neuroendocrinology 95: 223-231. http://dx.doi.org/10.1159/000330000
Taymans JM, Leysen JE, Langlois X (2003) Striatal gene expression of RGS2 and RGS4 is specifically mediated by dopamine D1 and D2 receptors: clues for RGS2 and RGS4 functions. J Neurochem 84: 1118-1127. http://dx.doi.org/10.1046/j.1471-4159.2003.01610.x
Tiberi M, Nash SR, Bertrand L, Lefkowitz RJ, Caron MG (1996) Differential regulation of dopamine D1A receptor responsiveness by various G protein-coupled receptor kinases. J Biol Chem 271: 3771-3778. http://dx.doi.org/10.1074/jbc.271.7.3771
Thomsen W, Frazer J, Unett D (2005) Functional assays for screening GPCR targets. Curr Opin Biotechnol 16: 655-665. http://dx.doi.org/10.1016/j.copbio.2005.10.008
Toda S, Alguacil LF, Kalivas PW (2003) Repeated cocaine administration changes the function and subcellular distribution of adenosine A1 receptor in the rat nucleus accumbens. J Neurochem 87: 1478-1484. http://dx.doi.org/10.1046/j.1471-4159.2003.02121.x
Urs NM, Snyder JC, Jacobsen JP, Peterson SM, Caron MG (2012) Deletion of GSK3β in D2R-expressing neurons reveals distinct roles for β-arrestin signaling in antipsychotic and lithium action. Proc Natl Acad Sci U S A 109: 20732-20737. http://dx.doi.org/10.1073/pnas.1215489109
Vallone D, Picetti R, Borrelli E (2000) Structure and function of dopamine receptors. Neurosci Biobehav Rev 24: 125-132. http://dx.doi.org/10.1016/S0149-7634(99)00063-9
Xie P, Browning DD, Hay N, Mackman N, Ye RD (2000) Activation of NF-kappa B by bradykinin through a Galpha(q)- and Gbeta gamma-dependent pathway that involves phosphoinositide 3-kinase and Akt. J Biol Chem 275: 24907-24914.
Yan Z, Song WJ, Surmeier J (1997) D2 dopamine receptors reduce N-type Ca2+ currents in rat neostriatal cholinergic interneurons through a membranedelimited,protein-kinase-C-insensitive pathway. J Neurophysiol 77: 1003-1015.
Yu C, Yang Z, Ren H, Zhang Y, Han Y, He D, Lu Q, Wang X, Wang X, Yang C, Asico LD, Hopfer U, Eisner GM, Jose PA, Zeng C (2009) D3 dopamine receptor regulation of ETB receptors in renal proximal tubule cells from WKY and SHRs. Am J Hypertens 22: 877-883. http://dx.doi.org/10.1038/ajh.2009.80
Zamponi GW, Currie KP (2013) Regulation of Ca(V)2 calcium channels by G protein coupled receptors. Biochim Biophys Acta 1828: 1629-1643. http://dx.doi.org/10.1016/j.bbamem.2012.10.004
Zeng C, Wang D, Yang Z, Wang Z, Asico LD, Wilcox CS, Eisner GM, Welch WJ, Felder RA, Jose PA (2004) Dopamine D1 receptor augmentation of D3 receptor action in rat aortic or mesenteric vascular smooth muscles. Hypertension 43: 673-679. http://dx.doi.org/10.1161/01.HYP.0000118958.27649.6f
Zeng C, Yang Z, Wang Z, Jones J, Wang X, Altea J, Mangrum AJ, Hopfer U, Sibley DR, Eisner GM, Felder RA, Jose PA (2005a) Interaction of angiotensin II type 1 and D5 dopamine receptors in renal proximal tubule cells. Hypertension 45: 804-810. http://dx.doi.org/10.1161/01.HYP.0000155212.33212.99
Zeng C, Wang Z, Hopfer U, Asico LD, Eisner GM, Felder RA, Jose PA (2005b) Rat strain effects of AT1 receptor activation on D1 dopamine receptors in immortalized renal proximal tubule cells. Hypertension 46: 799-805. http://dx.doi.org/10.1161/01.HYP.0000184251.01159.72
Zeng C, Liu Y, Wang Z, He D, Huang L, Yu P, Zheng S, Jones JE, Asico LD, Hopfer U, Eisner GM, Felder RA, Jose PA (2006) Activation of D3 dopamine receptor decreases angiotensin II type 1 receptor expression in rat renal proximal tubule cells. Circ Res 99: 494-500. http://dx.doi.org/10.1161/01.RES.0000240500.96746.ec
Zhang M, Fei XW, He YL, Yang G, Mei YA (2009) Bradykinin inhibits the transient outward K+ current in mouse Schwann cells via the cAMP/PKA pathway. Am J Physiol Cell Physiol 296: C1364-C1372. http://dx.doi.org/10.1152/ajpcell.00014.2009
Zhang X, Brovkovych V, Zhang Y, Tan F, Skidgel RA (2015) Downregulation of kinin B1 receptor function by B2 receptor heterodimerization and signaling. Cell Signal 27: 90-103. http://dx.doi.org/10.1016/j.cellsig.2014
Zhu YM, Bradbury DA, Pang L, and Knox AJ (2003) Transcriptional regulation of interleukin (IL)-8 by bradykinin in human airway smooth muscle cells involves prostanoid-dependent activation of AP-1 and nuclear factor (NF)-IL-6 and prostanoid-independent activation of NF-kB. J Biol Chem 278:29366–29375. http://dx.doi.org/10.1074/jbc.M301785200
Acta Biochimica Polonica is an OpenAccess quarterly and publishes four issues a year. All contents are distributed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY 4.0) license. Everybody may use the content following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
Copyright for all published papers © stays with the authors.
Copyright for the journal: © Polish Biochemical Society.