Suppression of ID1 expression in colon cancer cells increases sensitivity to 5-fluorouracil

  • Tomasz Przybyła Medical University of Gdańsk
  • Monika Sakowicz-Burkiewicz
  • Izabela Maciejewska
  • Hanna Bielarczyk
  • Tadeusz Pawełczyk

Abstract

Adjuvant chemotherapy with 5-fluorouracil remains the basic treatment for patients with advanced colorectal carcinoma. The major obstacle in successful treatment is an ability of CRC cells to acquire chemoresistance. Here we examined the impact of ID1 silencing on the sensitivity of CRC cells to 5-FU. To suppress ID1 expression in HT-29 and HCT-116 cells the cells were transduced with a lentiviral vector carrying the ID1 silencing sequence. Cells with silenced ID1 showed altered expression of epithelial and mesenchymal markers and exhibited increased proliferation rate compared to the parental cells. HCT-116 cells with suppressed ID1 became sensitized to 5-FU and this was not observed in HT-29 cells. Silencing ID1 resulted in altered expression of genes encoding enzymes metabolizing 5-FU. HT-29 cells with suppressed ID1 had significantly reduced mRNA level for thymidine phosphorylase, uridine-cytydine kinase 2 and dihydropyrimidine dehydrogenase. ID1 suppression in HCT-116 cells resulted in an increase of mRNA level for thymidine phosphorylase, thymidyne kinase and uridine-cytydine kinase 2 with concurrent drop of dihydropyrimidine dehydrogenase and thymidylate synthetase mRNA levels. In conclusion ID1 expression impacts the sensitivity of colon cancer cells to 5-FU and may be considered as potential predictive marker in CRC treatment.

References

Berridge M, Tan A, McCoy K, Wang R (1996) The Biochemical and Cellular Basis of Cell Proliferation Assays that Use Tetrazolium Salts. Biochemica 4: 14–19.

Brunner D, Frank J, Appl H, Schöffl H, Pfaller W, Gstraunthaler G (2010) Serum-free cell culture: the serum-free media interactive online database. Altex 27(1): 53-62.

Cheng YJ, Lee YC, Chiu WC, Tsai JW, Su YH, Hung AC, Chang PC, Huang CJ, Chai CY, Yuan SS (2014) High Id1 expression, a generally negative prognostic factor, paradoxically predicts a favorable prognosis for adjuvant paclitaxel plus cisplatin therapy in surgically treated lung cancer patients. Oncotarget 5(22): 11564-75. http://dx.doi.org/10.18632/oncotarget.2595

Connerney J, Andreeva V, Leshem Y, Mercado MA, Dowell K, Yang X, Lindner V, Friesel RE, Spicer DB (2008) Twist1 homodimers enhance FGF responsiveness of the cranial sutures and promote suture closure. Dev Biol 318(2): 323-34. http://dx.doi.org/10.1016/j.ydbio.2008.03.037

Etienne MC, Cheradame S, Fischel JL, Formento P, Dassonville O, Renee N, Schneider M, Thyss A, Demard F, Milano G (1995) Response to fluorouracil therapy in cancer patients: the role of tumoral dihydropyrimidine dehydrogenase activity. Journal of clinical oncology 13(7): 1663-70.

Gajula RP, Chettiar ST, Williams RD, Nugent K, Kato Y, Wang H, Malek R, Taparra K, Cades J, Annadanam A, Yoon AR, Fertig E, Firulli BA, Mazzacurati L, Burns TF, Firulli AB, An SS, Tran PT (2015) Structure-function studies of the bHLH phosphorylation domain of TWIST1 in prostate cancer cells. Neoplasia 17(1): 16-31. http://dx.doi.org/10.1016/j.neo.2014.10.009

Gumireddy K, Li A, Gimotty PA, Klein-Szanto AJ, Showe LC, Katsaros D, Coukos G, Zhang L, Huang Q (2009) KLF17 is a negative regulator of epithelial-mesenchymal transition and metastasis in breast cancer. Nat Cell Biol 11(11): 1297-304. http://dx.doi.org/10.1038/ncb1974

Hammond WA, Swaika A, Mody K (2016) Pharmacologic resistance in colorectal cancer: a review. Therapeutic advances in medical oncology 8(1): 57-84. http://dx.doi.org/10.1177/1758834015614530

Hasselblatt M, Mertsch S, Koos B, Riesmeier B, Stegemann H, Jeibmann A, Tomm M, Schmitz N, Wrede B, Wolff JE, Zheng W, Paulus W (2009) TWIST-1 is overexpressed in neoplastic choroid plexus epithelial cells and promotes proliferation and invasion. Cancer Res 69(6): 2219-23. http://dx.doi.org/10.1158/0008-5472.CAN-08-3176

Healey MA, Deaton SL, Alder JK, Winnepenninckx V, Casero RA Jr, Herman JG (2010) Id1 overexpression is independent of repression and epigenetic silencing of tumor suppressor genes in melanoma. Epigenetics 5(5): 410-21.

Graham JS, Cassidy J (2012). Adjuvant therapy in colon cancer. Expert review of anticancer therapy 12(1): 99-109. http://dx.doi.org/10.1586/era.11.189

Jolly MK, Boareto M, Huang B, Jia D, Lu M, Ben-Jacob E, Onuchic JN, Levine H (2015) Implications of the Hybrid Epithelial/Mesenchymal Phenotype in Metastasis. Front Oncol 5: 155. http://dx.doi.org/10.3389/fonc.2015.00155

Kelder W, Hospers GAP Plukker JTM (2006) Effects of 5-fluorouracil adjuvant treatment of colon cancer. Expert review of anticancer therapy 6: 785-794. http://dx.doi.org/10.1586/14737140.6.5.785

Li B, Tsao SW, Chan KW, Ludwig DL, Novosyadlyy R, Li YY, He QY, Cheung AL (2014) Id1-induced IGF-II and its autocrine/endocrine promotion of esophageal cancer progression and chemoresistance - implications for IGF-II and IGF-IR-targeted therapy. Clin Cancer Res 20(10): 2651-62. http://dx.doi.org/10.1158/1078-0432.CCR-13-2735

Li L, Wu D (2016) miR-32 inhibits proliferation, epithelial-mesenchymal transition, and metastasis by targeting TWIST1 in non-small-cell lung cancer cells. Onco Targets Ther 9: 1489-98. http://dx.doi.org/10.2147/OTT.S99931

Ling F, Kang B, Sun XH (2014) Id proteins: small molecules, mighty regulators. Curr Top Dev Biol 110: 189-216. http://dx.doi.org/10.1016/B978-0-12-405943-6.00005-1

Lombardi L, Morelli F, Cinieri S, Santini D, Silvestris N, Fazio N, Orlando L, Tonini G, Colucci G, Maiello E (2010) Adjuvant colon cancer chemotherapy: where we are and where we'll go. Cancer treatment reviews 36: S34-S41. http://dx.doi.org/10.1016/S0305-7372(10)70018-9

Longley DB, Harkin DP, Johnston PG (2003) 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 3: 330-338. http://dx.doi.org/10.1038/nrc1074

Maciejewska I, Sakowicz-Burkiewicz M, Pawelczyk T (2014) Id1 Expression Level Determines the Differentiation of Human Dental Pulp Stem Cells. Journal of Dental Research 93(6): 576–581. http://dx.doi.org/10.1177/0022034514530164

Offer SM, Butterflied GL, Jerde CR, Fossum CC, Wegner NJ, Diasio RB (2014) microRNAs miR-27a and miR-27b directly regulate liver dihydropyrimidine dehydrogenase expression through two conserved binding sites. Mol Cancer Ther 13: 742-751. http://dx.doi.org/10.1158/1535-7163.MCT-13-0878

Oie S, Ono M, Fukushima H, Hosoi F, Yano H, Maruyama Y, Kojiro M, Terada T, Hirano K, Kuwano M, Yamada Y (2007) Alteration of dihydropyrimidine dehydrogenase expression by IFN-α effects the antiproliferative effects of 5-fluorouracil in human hepatocellular carcinoma cells. Mol Cancer Ther 6: 2310-2318. http://dx.doi.org/10.1158/1535-7163.MCT-06-0281

Oyan B (2012) Why do targeted agents not work in the adjuvant setting in colon cancer? Expert review of anticancer therapy 12(10): 1337-1345. http://dx.doi.org/1586/era.12.111

Peng JJ, Wu B, Xiao XB, Shao YS, Feng Y, Yin MX (2014). Reduced Kruppel-like factor 17 (KLF17) expression correlates with poor survival in patients with gastric cancer. Arch Med Res 45: 394–9. http://dx.doi.org/10.1016/j.arcmed.2014.06.005

Peters GJ, Laurensse E, Leyva A, Lankelma J, Pinedo HM (1986). Sensitivity of human, murine, and rat cells to 5-fluorouracil and 5’-deoxy-5-fluorouridine in relation to drug-metabolizing enzymes. Cancer Res 46: 20-28.

Peters GJ, van Groeningen CJ, Laurensse EJ, Pinedo HM (1991) A comparison of 5-fluorouracil metabolism in human colorectal cancer and colon mucosa. Cancer 68: 1903-1909.

Qian J, Luo Y, Gu X, Zhan W, Wang X (2013) Twist1 promotes gastric cancer cell proliferation through up-regulation of FoxM1. PLoS One 8(10): e77625. http://dx.doi.org/10.1371/journal.pone.0077625

Qiang L, Zhao B, Ming M, Wang N, He TC, Hwang S, Thorburn A, He YY (2014) Regulation of cell proliferation and migration by p62 through stabilization of Twist1. Proc Natl Acad Sci USA 111(25): 9241-6. http://dx.doi.org/10.1073/pnas.1322913111

Rice DP, Aberg T, Chan Y, Tang Z, Kettunen PJ, Pakarinen L, Maxson RE, Thesleff I (2000) Integration of FGF and TWIST in calvarial bone and suture development. Development 127(9): 1845-55.

Sánchez-Tilló E, de Barrios O, Siles L, Cuatrecasas M, Castells A, Postigo A (2014) ID1 regulates U87 human cell proliferation and invasion. Clin Cancer Res 20(10): 2651-62. http://dx.doi.org/10.3892/ol.2013.1507

Stankic M, Pavlovic S, Chin Y, Brogi E, Padua D, Norton L, Massagué J, Benezra R (2013) TGF-β-Id1 signaling opposes Twist1 and promotes metastatic colonization via a mesenchymal-to-epithelial transition. Cell Rep 5(5): 1228-42. http://dx.doi.org/10.1016/j.celrep.2013.11.014

Sumida T, Murase R, Onishi-Ishikawa A, McAllister SD, Hamakawa H, Desprez PY (2013) Targeting Id1 reduces proliferation and invasion in aggressive human salivary gland cancer cells. BMC Cancer 13: 141. http://dx.doi.org/10.1186/1471-2407-13-141

Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139(5): 871-90. http://dx.doi.org/10.1016/j.cell.2009.11.007

Tobin NP, Sims AH, Lundgren KL, Lehn S, Landberg G (2011) Cyclin D1, Id1 and EMT in breast cancer. BMC Cancer 11: 417. http://dx.doi.org/10.1186/1471-2407-11-417

Yu H, Yue X, Zhao Y, Li X, Wu L, Zhang C, Liu Z, Lin K, Xu-Monette ZY, Young KH, Liu J, Shen Z, Feng Z, Hu W (2015) LIF negatively regulates tumour-suppressor p53 through Stat3/ID1/MDM2 in colorectal cancers. Nat Commun 5: 5218. http://dx.doi.org/0.1038/ncomms6218

Zhang H, Gong J, Kong D, Liu HY (2015) Anti-proliferation effects of Twist gene silencing in gastric cancer SGC7901 cells. World J Gastroenterol 21(10): 2926-36. http://dx.doi.org/10.3748/wjg.v21.i10.2926

Zhu DJ, Chen XW, Zhang WJ, Wang JZ, Ouyang MZ, Zhong Q, Liu CC (2015) Twist1 is a potential prognostic marker for colorectal cancer and associated with chemoresistance. Am J Cancer Res 5(6): 2000-11.

Published
2017-07-11
Section
Articles