Effects and time-kill assessment of amoxicillin used in combination with chloramphenicol against bacteria of clinical importance

  • Olufunmiso O Olajuyigbe University of Fort Hare, Alice http://orcid.org/0000-0002-7889-0416
  • Roger M Coopoosamy Mangosuthu University of Technology
  • Anthony J Afolayan
Keywords: Drug-drug interactions, fractional inhibitory concentrations, multidrug resistance, time-kill assessment

Abstract

With the emergence of multidrug-resistant organisms in an era when drug development faces challenges causing pharmaceutical companies to curtail or abandon researches on anti-infective agents, the use of combining the existing antimicrobial agents may be an alternative. This study evaluates the effects of combining amoxicillin and chloramphenicol to which many bacteria have become resistant in vitro against Gram positive and Gram negative bacteria by agar diffusion, checkerboard and time-kill assays. The test isolates were susceptible to amoxicillin with minimum inhibitory concentrations (MICs) ranging between 0.448 and 500 µg/ml and between 1.953 and 31.25 µg/ml for chloramphenicol. On combining these agents, there was a drastic reduction in their minimum inhibitory concentrations (MICs) indicating an increased antibacterial activity that showed synergistic interaction against all the bacteria. At the highest concentrations, the inhibition zones ranges were 20.33 – 38.33 ± 0.58 µg/ml for amoxicillin, 27.67 – 37.67 ± 0.58 µg/ml for chloramphenicol and 31.67 – 39.33 ± 0.58 µg/ml for the combined agents. The fractional inhibitory concentration indices (FICIs) showed synergy ranging from 0.129 to 0.312 while FICIs for additive interaction was between 0.688 and 1.0. There was no antagonistic interaction. At the 1/2MICs of the combined antibiotics, all the tested bacteria, except Klebsiella pneumoniae ATCC 4352, Proteus vulgaris CSIR 0030 and Enterococcus cloacae ATCC 13047 were eliminated before 24 h. At the MICs, all the tested bacteria were eliminated with the exception of Enterococcus cloacae ATCC 13047 that was almost totally eliminated.  Post antibiotic effects after 48 h showed that all the cultures were sterile with the exception of that of Enterococcus cloacae ATCC 13047. The lack of antagonism between these antibacterial agents in checkerboard and time-kill assays suggested that combining amoxicillin with chloramphenicol will be an improved therapy over the use of each antibiotic individually. The study indicates the potential beneficial value of combining amoxicillin and chloramphenicol in the treatment of microbial infections in clinical settings.

References

Aakra A, Vebø H, Indahl U, Snipen L, Gjerstad Ø, Lunde M, Nes IF, 2010. The response of Enterococcus faecalis V583 to chloramphenicol treatment. Int J Microbiol Article ID 483048. doi:10.1155/2010/483048.

Abate A. 2000. Anti-tuberculosis activity of β-lactam antibiotics: prospect for the treatment of MDR tuberculosis. Ethiop J Health Dev 14(3): 276-96.

Abate G, Miorner H, 1998. Susceptibility of multi-drug resistant strains of Mycobacterium tuberculosis to amoxicillin in combination with clavulanic acid and ethambutol. J Antimicrob Chemother 42: 735-40.

Bou G, Martïnez-Beltran J, 2000. Cloning, nucleotide sequencing, and analysis of the gene encoding an AmpC β-lactamase in Acinetobacter baumannii. Antimicrob Agents Chemother 44: 428–432.

Burns JL, Hedi LA, Lien DM, 1989. Chloramphenicl resistance in Pseudomonas cepacia because of decreased permeability. Antimicrob Agents Chemother 33: 136-141. doi: 10.1128/AAC.33.2.136

Cameron EAB, Powell KU, Baldwin L, Jones P, Bell GD, Williams SGJ, 2004. Helicobacter pylori: antibiotic resistance and eradication rates in Suffolk, UK, 1991–2001. J Med Microbiol 53: 535-538. doi: 10.1099/jmm.0.05499-0

Clatworthy AE, Pierson E, Hung DT, 2007. Targeting virulence: a new paradigm for antimicrobial therapy. Nat Chem Biol 3: 541-548. doi:10.1038/nchembio.2007.24

Clinical and Laboratory Standards Institute, 2009. M7-A8, Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard - 18th edition. Wayne, PA: CLSI.

D’Costa VM, McGrann KM, Hughes DW, Wright GD, 2006. Sampling the antibiotic resistome. Sci 311: 374–377. doi: 10.1126/science.1120800

Daniels C, Ramos JL, 2009. Adaptive drug resistance mediated by root-nodulation-cell division efflux pumps. Clin Microbiol Infect 15(Suppl. 1): 32-36. doi: 10.1111/j.1469-0691.2008.02693.x.

Daschner FD, 1976. Combination of bacteriostatic and bactericidal drugs: lack of significant in vitro antagonism between penicillin, cephalothin and rolitetracycline. Antimicrob Agents Chemother 10: 802-808.

Edgar R, Friedman N, Molshanski-Mor S, Qimron U, 2012. Reversing bacterial resistance to antibiotics by phage-mediated delivery of dominant sensitive genes. Appl Environ Microbiol 78(3): 744-51. doi: 10.1128/AEM.05741-11

EUCAST, 2013. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 3.1, 2013. http://www.eucast.org/clinical_breakpoints/ (Accessed: 6th November, 2016).

Fox PM, Lampen RJ, Stumpf KS, Archer GL, Climo MW, 2006. Successful therapy of experimental endocarditis caused by vancomycin-resistant Staphylococcus aureus with a combination of vancomycin and beta-lactam antibiotics. Antimicrob Agents Chemother 50: 2951–2956. doi: 10.1128/AAC.00232-06

Güzel CB, Gerçeker AA. 2008. In vitro activities of various antibiotics, alone and in combination with colistin methanesulfonate, against Pseudomonas aeruginosa strains isolated from cystic fibrosis patients. Chemother 54(2): 147–151. doi: 10.1159/000119741

Hall MJ, Middleton RF, Westmacott D, 1983. The fractional inhibitory concentration (FIC) index as a measure of synergy. J Antimicrob Chemother 11: 427–433. doi: 10.1093/jac/11.5.427

Kumar A, Schweizer HP. 2005. Bacterial resistance to antibiotics: active efflux and reduced uptake. Adv Drug Deliv Rev 57(10): 1486-513.

Lynch JP 3rd, Zhanel GG, 2005. Escalation of antimicrobial resistance among Streptococcus pneumoniae: implications for therapy. Semin Respir Crit Care Med 26: 575–616. doi: 10.1055/s-2005-925524

Maviglia R, Nestorini R, Pennisi M, 2009. Role of old antibiotics in multidrug resistant bacterial infections. Curr Drug Targets 10: 895–905. doi: 10.2174/138945009789108846

Montero CI, Johnson MR, Chou CJ, Conners SB, Geouge SG, Tachdjian S, Nichols JD, Kelly RM, 2007. Response of wild-type and resistant strains of the hyperthermophilic bacterium thermotoga maritime to chloramphenicol challenge. Appl Environ Microbiol 73: 5058-5065. doi: 10.1128/AEM.00453-07

Nitzan O, Suponitzky U, Kennes Y, Chazan B, Raul R, Colodner R. 2010. Is chloramphenicol making a comeback? Isr Med Assoc J 12: 371–374.

Normark BH, Normark S (2002) Evolution and spread of antibiotic resistance. J Intern Med 252: 91–106. doi: 10.1046/j.1365-2796.2002.01026.x

Pankey G, Ashcraft D, Patel N, 2005. In vitro synergy of daptomycin plus rifampin against Enterococcus faecium resistant to both linezolid and vancomycin. Antimicrob Agents Chemother 49: 5166-8. doi: 10.1128/AAC.49.12.5166-5168.2005

Petersen PJ, Labthavikul P, Jones CH, Bradford PA, 2006. In vitro antibacterial activities of tigecycline in combination with other antimicrobial agents determined by chequerboard and time-kill kinetic analysis. J Antimicrob Chemother 57: 573-576. doi:10.1093/jac/dki477

Schwartz S, Kehrenberg C, Doublet B, Cloeckaert A, 2004. – Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol Rev 28: 519–542. doi: http://dx.doi.org/10.1016/j.femsre.2004.04.001

Shahhet L, Alraghban D, Chehna D, 2011, Improvement of the physicochemical properties of amoxicillin trihydrate powder by recrystallization at different pH values. Int J Pharm Pharmaceut Sci 3(suppl 3): 92-100.

Smith E, Williamson M, Wareham N, Kaatz G, Gibbons S, 2007. Antibacterial and modulators of bacterial resistance from the immature cones of Chamaecyparis lawsoniana. Phytochem 68: 210-217. doi:10.1016/j.phytochem.2006.10.001

Spahn CMT, Prescott CD, 1996. Throwing a spanner in the works: antibiotics and the translation apparatus. J Mol Med 74: 423-439. doi: 10.1007/BF00217518

Yellanki SK, Singh J, Ali SJ, 2010. Design and characterization of amoxicillin trihydrate mucoadhesive microspheres for prolonged gastric retention. Int J Pharm Sci Drug Res 2: 112-114.

Zhang R, Eggleston K, Rotimi V, Zeckhauser RJ, 2006. Antibiotic resistance as a global threat: Evidence from China, Kuwait and the United States. Globalization and Health 2: 6. doi: 10.1186/1744-8603-2-6

Published
2017-12-31
Section
Articles