Changes in pancreas caused by different types of hypertension

  • Paulina Nowińska Department of Histology and Cytophysiology Medical Univeristy of Białystok
  • Irena Kasacka Department of Histology and Cytophysiology Medical Univeristy of Białystok
Keywords: pancreas, hypertnesion

Abstract

Hypertension is considered a lifestyle disease. Unfavourable forecasts predict a significant increase in the number of patients suffering from this disorder. As a result of ischemia many changes in various organs have been observed. An interesting question arises of whether differences between the mechanisms occurring in different types of hypertension could produce different effects in organs. It is well known that there is a close relationship between hypertension and insulin resistance. On the other hand, insulin resistance is the main cause of type 2 diabetes, which develops parallelly with changes in the pancreas. The pancreas is a very important organ since it produces enzymes crucial for the digestive process as well as performs an important endocrine function. The present work focuses primarily on the second issue. The authors present an overview of contemporary literature concerning the influence of different types of hypertension on the function of the pancreas.

References

Abuissa H, Jones PG, Marso SP, O’Keefe JH (2005) Angiotensin-converting enzyme inhibitors or angiotensin receptor blockers for prevention of type 2 diabetes: a meta-analysis of randomized clinical trials. J Am Coll Cardiol 46: 821–826. http://dx.doi.org/10.1016/j.jacc.2005.05.051

Andronico G, Ferraro-Mortellaro R, Mangano MT, Romé M, Raspanti F, Pinto A, Licata G, Seddio G, Mulé G, Cerasola G (2002) Insulin resistance and glomerular hemodynamics in essential hypertension. Kidney Int 62: 1005–1009. http://dx.doi.org/10.1046/j.1523-1755.2002.00529.x

Bhanot S, McNeill JH (1996) Insulin and hypertension: a causal relationship? Cardiovasc Res 31: 212–221. http://dx.doi.org/10.1016/S0008-6363(95)00218-9

Buchanan TA, Youn JH, Campese VM, Sipos GF (1992) Enhanced glucose tolerance in spontaneously hypertensive rats: pancreatic β-cell hyperfunction with normal insulin sensitivity. Diabetes 41: 872–878. http://dx.doi.org/10.2337/diab.41.7.872

Carlsson PO, Berne C, Jansson L (1998) Angiotensin II and the endocrine pancreas: effects on islet blood flow and insulin secretion in rats. Diabetologia 41: 127–133. http://dx.doi.org/10.1007%2Fs001250050880

Catena C, Giacchetti G, Novello M, Colussi G, Cavarape A, Sechi LA (2003) Cellular mechanisms of insulin resistance in rats with fructose-induced hypertension. Am J Hypertens 16: 973–978. http://dx.doi.org/10.1016/S0895-7061(03)01002-1

Chahoud J, Mrad J, Semaan A, Asmar R (2014) Prevalence of diabetes mellitus among patients with essential arterial hypertension. J Med Liban 63: 74–80.

Chen AX, Jerums G, Baqar S, Lambert E, Somarajah G, Thomas G, O’Callaghan Ch, MacIsaac RJ, Ekinci EI (2015) Short-term dietary salt supplementation blunts telmisartan induced increases in plasma rennin activity in hypertensive patients with type 2 diabetes mellitus. Clin Sci (Lond) 129: 415–422. http://dx.doi.org/10.1042/CS20140536

Cheung BM, Li C (2012) Diabetes and hypertension: is there a common metabolic pathway? Curr Atheroscler Rep 14: 160–166. http://dx.doi.org/10.1007%2Fs11883-012-0227-2

Cohuet G, Struijker-Boudier H (2006) Mechanisms of target organ damage caused by hypertension: therapeutic potential. Pharmacol Ther 111: 81–98. http://dx.doi.org/10.1016/j.pharmthera.2005.09.002

Cooper ME, Rumble JR, Allen TJ, O'Brien RC, Jerums G, Doyle AE (1992) Antihypertensive therapy in a model combining spontaneous hypertension with diabetes. Kidney Int 4: 898–903. http://dx.doi.org/10.1038/ki.1992.137

Dai S, McNeill JH (1995) Fructose-induced Hypertension in Rats Is Concentration- and Duration-Dependent. J Pharmacol Toxicol Methods 33: 101–107. http://dx.doi.org/10.1016/1056-8719(94)00063-A

Damiano P, Cavallero S, Mayer M, Rosón MI, de la Riva I, Fernández B, Puyó AM (2002) Impaired Response to Insulin Associated with Protein Kinase C in Chronic Fructose-induced Hypertension. Blood Press 11: 345–351.

Davis BA, Crook JE, Vestal RE, Oates JA (1979) Prevalence of renovascular hypertension in patients with grade III or IV hypertensive retinopathy. N Engl J Med 301: 1273–1276. http://dx.doi.org/10.1056/NEJM197912063012307

Djamgoz MB (2015) Blood pressure and risk of cancer progression – A possible connection with salt and voltage-gated sodium channel. Med Hypotheses 85: 591–593. http://dx.doi.org/10.1016/j.mehy.2015.07.021

Dunning BE, Moltz JH, Fawcett CP (1984) Actions of neurohypophysial peptides on pancreatic hormone release. Am J Phys Endo Met 246: E108–E114.

Ferrannini E, Cushman WC (2012) Diabetes and hypertension: the bad companions. Lancet 380: 601–610. http://dx.doi.org/10.1016/S0140-6736(12)60987-8

Giner V, Coca A, de la Sierra A (2001) Increased insulin resistance in salt sensitive essential hypertension. J Hum Hypertens 15: 481–485. http://dx.doi.org/10.1038/sj.jhh.1001216

Gletsu N, Doan TN, Cole J, Sutliff RL, Bernstein KE (2005) Angiotensin II-induced hypertension in mice caused an increase in insulin secretion. Vascul Pharmacol 42: 83–92. http://dx.doi.org/10.1016/j.vph.2005.01.006

Gress TW, Nieto FJ, Shahar E, Wofford MR, Brancati FL (2000) Hypertension and antihypertensive therapy as risk factors for type 2 diabetes mellitus. N Engl J Med 342: 905–912. http://dx.doi.org/10.1056/NEJM200003303421301

Guerrera C, Colivicchi F, Pola R, Travaglino F, Filice G, Guerrera G, Melina D (2001) Acute abdominal symptoms in malignant hypertension: clinical presentation in five cases. Clin Exp Hypertens 23: 461–469.

Hsueh, WA, Anderson PW (1992) Hypertension, the Endothelial Cell and theVascular Complications of Diabetes Mellitus. Hypertension 20: 253–263. DOI:10.1161/01.HYP.20.2.253

Hwang IS, Ho H, Hoffman BB, Reaven GM (1987) Fructose-induced insulin resistance and hypertension in rats. Hypertension 10: 512–516. doi: 10.1161/01.HYP.10.5.512

Kahn SE (2003) The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia 46: 3–19. http://dx.doi.org/10.1007%2Fs00125-002-1009-0

Kasacka I, Janiuk I, Piotrowska Ż (2015) Evaluation of CART-, glucagon-, and insulin immunoreactive cells in the pancreas of anexperimental rat model of unilateral renal arterystenosis. Histol Histopathol 30:445–452. DOI: 10.14670/HH-30.445

Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J (2005) Global burden of hypertension: analysis of worldwide data. Lancet 365: 217–223. http://dx.doi.org/10.1016/S0140-6736(05)17741-1

Khodabandehloo H, Gorgani-Firuzjaee S, Panahi G, Meshkani R (2016) Molecular and cellular mechanisms linking inflammation to insulin resistance and β-cell dysfunction. Transl Res 167: 228–256. http://dx.doi.org/10.1016/j.trsl.2015.08.011

Kinalska I (2001) Insulin excretion impairment in type 2 diabetes – clinical implications. Diabetologia Praktyczna, tom 2, supl. C.

Kochueva M, Sukhonos V, Shalimova A, Psareva V, Kirichenko N (2014) State of integral remodeling parameters of target organs in patients with essential hypertension and obesity. Georgian Med News 231: 26–30.

Landsberg L, Krieger DR (1989) Obesity, metabolism, and the sympathetic nervous system. Am J Hypertens 2: 125S–132S. doi: 10.1093/ajh/2.3.125S

Li D, Mao Y, Chang P, Liu C, Hassan MM, Yeung SJ, Abbruzzese JL (2015) Impacts of new-onset and long-term diabetes on clinical outcome of pancreatic cancer. Am J Cancer Res 5: 3260–3269.

Lukens FD (1959) The pancreas: insulin and glucagon. Annu Rev Physiol 21: 445–474. http://dx.doi.org/10.1146/annurev.ph.21.030159.002305

Luther JM, Brown NJ (2011) The renin–angiotensin–aldosterone system and glucose homeostasis. Trends Pharmacol Sci 32: 734–739. http://dx.doi.org/10.1016/j.tips.2011.07.006

Ma L, Feng M, Qian Y, Yang W, Liu J, Han R, Zhu H, Li Y (2015). Insulin resistance is an important risk factor for cognitive impairment in elderly patients with primary hypertension. Yonsei Med J 56: 89–94. http://dx.doi.org/10.3349/ymj.2015.56.1.89

Maiztegui B, Borelli MI, Raschia MA, Del Zotto H, Gagliardino JJ (2009) Islet adaptive changes to fructose-induced insulin resistance: β-cell mass, glucokinase, glucose metabolism, and insulin secretion. J Endocrinol 200: 139–149. http://dx.doi.org/10.1677/JOE-08-0386

Małecki MT (2006) Obesity – insulin resistance – type 2 diabetes mellitus. Kardiol Pol 64: (10 Suppl 6):561–566.

Małecki MT, Klupa T (2007) Role of beta-cells in the pathogenesis of diabetes Diabetologia Praktyczna, tom 8, suplement B.

Martinez-Maldonado M (1991) Pathophysiology of renovascular hypertension. Hypertension 17: 707–719. DOI:10.1161/01.HYP.17.5.707

Matayoshi T, Kamide K, Takiuchi S, Horio T, Yoshihara F, Nakamura S, Kawano Y (2007). Relationship between insulin resistance and the renin-angiotensin system: analysis for patients with essential and renovascular hypertension. Clin Exp Hypertens 29: 479–487. DOI: 10.1080/1064196070161618

Ogihara T, Asano T, Ando K, Sakoda H, Anai M, Shojima N, Ono H, Onishi Y, Fujishiro M, Abe M, Fukushima Y, Kikuchi M, Fujita T (2002) High-salt diet enhances insulin signaling and induces insulin resistance in Dahl salt-sensitive rats. Hypertension 40: 83–89. doi:10.1161/01.HYP.0000022880.45113.C9

Okamura T, Miyazaki M, Ingami T, Toda N (1986) Vascular Renin-Angiotensin System in Two-Kidney, One Clip Hypertensive Rats. Hypertension 8: 560–565. DOI:10.1161/01.HYP.8.7.560

Pagel W, Woolf AF (1948) Aseptic necrosis of pancreas due to arterial thrombosis in malignant hypertension. Br Med J 1: 442–438.

Park SE, Rhee EJ, Park CY, Oh KW, Park SW, Kim SW, Lee WY (2013) Impact of hyperinsulinemia on the development of hypertension in normotensive, nondiabetic adults: a 4-year follow-up study. Metabolism 62: 532–538. http://dx.doi.org/10.1016/j.metabol.2012.09.013

Penesova A, Cizmarova E, Belan V, Blazicek P, Imrich R, Vlcek M, Vigas M, Selko D, Koska J, Radikova Z (2011) Insulin resistance in young, lean male subjects with essential hypertension. J Hum Hypertens 25: 391–400. http://dx.doi.org/10.1038/jhh.2010.72

Piotrowska Ż, Janiuk I, Lewandowska A, Kasacka I (2016) Renovascular hypertensive decrease immunoreactivity of cells containing chromogranin A and pancreastatin in the pancreas of rats. Histol Histopathol 32:69–75. http://dx.doi.org/10.14670/HH-11-771

Prentki M, Nolan CJ (2006) Islet β cell failure in type 2 diabetes. J Clin Invest 116(7): 1802–1812. http://dx.doi.org/10.1172%2FJCI29103

Reaven GM, Ho H, Hoffmann BB (1989) Somatostatin Inhibition of Fructose-Induced Hypertension. Hypertension 14: 117–120. DOI:10.1161/01.HYP.14.2.117

Satoh M, Nagasu H, Haruna Y, Ihoriya C, Kadoya H, Sasaki T, Kashihara N (2014) Hypertension promotes islet morphological changes with vascular injury on pre-diabetic status in SHRsp rats. Clin Exp Hypertens 36: 159–164. http://dx.doi.org/10.3109/10641963.2013.804539

Sechi LA, Melis A, Tedde R (1992) Insulin hypersecretion: a distinctive feature between essential and secondary hypertension. Metabolism 41: 1261–1266. http://dx.doi.org/10.1016/0026-0495(92)90019-7

Shehata MF (2008) Genetic and dietary salt contributors to insulin resistance in Dahl salt-sensitive (S) rats. Cardiovasc Diabetol 7: 7. doi: 10.1186/1475-2840-7-7.

Sowers JR, Epstein M, Frohlich ED (2001) Diabetes, hypertension, and cardiovascular disease an update. Hypertension 37: 1053–1059. DOI:10.1161/01.HYP.37.4.1053

Tran LT, Yuen VG, McNeill JH (2009) The fructose-fed rat: a review on the mechanisms of fructose-induced insulin resistance and hypertension. Mol Cell Biochem 332: 145–159. http://dx.doi.org/10.1007%2Fs11010-009-0184-4

Published
2017-12-31
Section
Articles