The calcium binding properties and structure prediction of the Hax-1 protein

  • Anna Balcerak
  • Sebastian Rowinski
  • Lukasz M Szafron
  • Ewa Anna Grzybowska Cancer Center Institute

Abstract

Hax-1 is involved in regulating apoptosis, calcium homeostasis and cell migration but the exact mechanisms of its action, as well as its physical properties, chemical activities and structural features still remain undiscovered. Hax-1 lacks homology to any other known protein domains or motifs, except for a very slight similarity to the EF-hand domain. Herein, purified Hax-1 was used for preliminary analysis of its calcium-binding properties, along with a structure prediction analysis, which confirmed the possibility of Ca2+ binding in the C-terminal part of the protein.

Author Biography

Ewa Anna Grzybowska, Cancer Center Institute
Molecular and Translational Biology Dept.,

References

Al-Maghrebi M, Brule H, Padkina M, Allen C, Holmes WM & Zehner ZE (2002): The 3' untranslated region of human vimentin mRNA interacts with protein complexes containing eEF-1gamma and HAX-1. Nucleic Acids Res 30, 5017-5028.

Chao JR, Parganas E, Boyd K, Hong CY, Opferman JT & Ihle JN (2008): Hax1-mediated processing of HtrA2 by Parl allows survival of lymphocytes and neurons. Nature 452, 98-102, http://doi.org/10.1038/nature06604.

Cilenti L, Soundarapandian MM, Kyriazis GA, Stratico V, Singh S, Gupta S, Bonventre JV, Alnemri ES & Zervos AS (2004): Regulation of HAX-1 anti-apoptotic protein by Omi/HtrA2 protease during cell death. J Biol Chem 279, 50295-50301, http://doi.org/10.1074/jbc.M406006200.

Dyson HJ & Wright PE (2005): Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6, 197-208, http://doi.org/10.1038/nrm1589.

Fadeel B & Grzybowska E (2009): HAX-1: a multifunctional protein with emerging roles in human disease. Biochim Biophys Acta 1790, 1139-1148, http://doi.org/10.1016/j.bbagen.2009.06.004.

Gallagher AR, Cedzich A, Gretz N, Somlo S & Witzgall R (2000): The polycystic kidney disease protein PKD2 interacts with Hax-1, a protein associated with the actin cytoskeleton. Proc Natl Acad Sci U S A 97, 4017-4022.

Ganguly D & Chen J (2015): Modulation of the disordered conformational ensembles of the p53 transactivation domain by cancer-associated mutations. PLoS Comput Biol 11, e1004247, http://doi.org/10.1371/journal.pcbi.1004247.

Han Y, Chen YS, Liu Z, Bodyak N, Rigor D, Bisping E, Pu WT & Kang PM (2006): Overexpression of HAX-1 protects cardiac myocytes from apoptosis through caspase-9 inhibition. Circ Res 99, 415-423, http://doi.org/10.1161/01.RES.0000237387.05259.a5.

Hirasaka K, Mills EM, Haruna M, Bando A, Ikeda C, Abe T, Kohno S, Nowinski SM, Lago CU, Akagi K, Tochio H, Ohno A, Teshima-Kondo S, Okumura Y & Nikawa T (2016): UCP3 is associated with Hax-1 in mitochondria in the presence of calcium ion. Biochem Biophys Res Commun 472, 108-113, http://doi.org/10.1016/j.bbrc.2016.02.075.

Jeyaraju DV, Cisbani G, De Brito OM, Koonin EV & Pellegrini L (2009): Hax1 lacks BH modules and is peripherally associated to heavy membranes: implications for Omi/HtrA2 and PARL activity in the regulation of mitochondrial stress and apoptosis. Cell Death Differ 16, 1622-1629, http://doi.org/10.1038/cdd.2009.110.

Kang YJ, Jang M, Park YK, Kang S, Bae KH, Cho S, Lee CK, Park BC, Chi SW & Park SG (2010): Molecular interaction between HAX-1 and XIAP inhibits apoptosis. Biochem Biophys Res Commun 393, 794-799, http://doi.org/10.1016/j.bbrc.2010.02.084.

Klein C, Grudzien M, Appaswamy G, Germeshausen M, Sandrock I, Schaffer AA, Rathinam C, Boztug K, Schwinzer B, Rezaei N, Bohn G, Melin M, Carlsson G, Fadeel B, Dahl N, Palmblad J, Henter JI, Zeidler C, Grimbacher B & Welte K (2007): HAX1 deficiency causes autosomal recessive severe congenital neutropenia (Kostmann disease). Nat Genet 39, 86-92, http://doi.org/10.1038/ng1940.

Kokoszynska K, Rychlewski L & Wyrwicz LS (2010): Distant homologs of anti-apoptotic factor HAX1 encode parvalbumin-like calcium binding proteins. BMC Res Notes 3, 197, http://doi.org/10.1186/1756-0500-3-197.

Li B, Hu Q, Xu R, Ren H, Fei E, Chen D & Wang G (2012): Hax-1 is rapidly degraded by the proteasome dependent on its PEST sequence. BMC Cell Biol 13, 20, http://doi.org/10.1186/1471-2121-13-20.

Maruyama K, Mikawa T & Ebashi S (1984): Detection of calcium binding proteins by 45Ca autoradiography on nitrocellulose membrane after sodium dodecyl sulfate gel electrophoresis. J Biochem 95, 511-519.

Radhika V, Onesime D, Ha JH & Dhanasekaran N (2004): Galpha13 stimulates cell migration through cortactin-interacting protein Hax-1. J Biol Chem 279, 49406-49413, http://doi.org/10.1074/jbc.M408836200.

Ramsay AG, Keppler MD, Jazayeri M, Thomas GJ, Parsons M, Violette S, Weinreb P, Hart IR & Marshall JF (2007): HS1-associated protein X-1 regulates carcinoma cell migration and invasion via clathrin-mediated endocytosis of integrin alphavbeta6. Cancer Res 67, 5275-5284, http://doi.org/10.1158/0008-5472.CAN-07-0318.

Roy A, Kucukural A & Zhang Y (2010): I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5, 725-738, http://doi.org/10.1038/nprot.2010.5.

Sarnowska E, Grzybowska EA, Sobczak K, Konopinski R, Wilczynska A, Szwarc M, Sarnowski TJ, Krzyzosiak WJ & Siedlecki JA (2007): Hairpin structure within the 3'UTR of DNA polymerase beta mRNA acts as a post-transcriptional regulatory element and interacts with Hax-1. Nucleic Acids Res 35, 5499-5510, http://doi.org/10.1093/nar/gkm502.

Suzuki Y, Demoliere C, Kitamura D, Takeshita H, Deuschle U & Watanabe T (1997): HAX-1, a novel intracellular protein, localized on mitochondria, directly associates with HS1, a substrate of Src family tyrosine kinases. J Immunol 158, 2736-2744.

Trebinska A, Högstrand K, Grandien A, Grzybowska EA, Fadeel B (2014) Exploring the anti-apoptotic role of HAX-1 versus BCL-XL in cytokine-dependent bone marrow-derived cells from mice. FEBS Lett. 588, 2921-7, http://dx.doi.org/10.1016/j.febslet.2014.05.042

Trebinska A, Rembiszewska A, Ciosek K, Ptaszynski K, Rowinski S, Kupryjanczyk J, Siedlecki JA & Grzybowska EA (2010): HAX-1 overexpression, splicing and cellular localization in tumors. BMC Cancer 10, 76, http://doi.org/10.1186/1471-2407-10-76.

Uversky VN, Oldfield CJ & Dunker AK (2008): Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu Rev Biophys 37, 215-246, http://doi.org/10.1146/annurev.biophys.37.032807.125924.

Vafiadaki E, Arvanitis DA, Pagakis SN, Papalouka V, Sanoudou D, Kontrogianni-Konstantopoulos A & Kranias EG (2009): The anti-apoptotic protein HAX-1 interacts with SERCA2 and regulates its protein levels to promote cell survival. Mol Biol Cell 20, 306-318, http://doi.org/10.1091/mbc.E08-06-0587.

Vafiadaki E, Sanoudou D, Arvanitis DA, Catino DH, Kranias EG & Kontrogianni-Konstantopoulos A (2007): Phospholamban interacts with HAX-1, a mitochondrial protein with anti-apoptotic function. J Mol Biol 367, 65-79, http://doi.org/10.1016/j.jmb.2006.10.057.

Wells M, Tidow H, Rutherford TJ, Markwick P, Jensen MR, Mylonas E, Svergun DI, Blackledge M & Fersht AR (2008): Structure of tumor suppressor p53 and its intrinsically disordered N-terminal transactivation domain. Proc Natl Acad Sci U S A 105, 5762-5767, http://doi.org/10.1073/pnas.0801353105.

Yachdav G, Kloppmann E, Kajan L, Hecht M, Goldberg T, Hamp T, Honigschmid P, Schafferhans A, Roos M, Bernhofer M, Richter L, Ashkenazy H, Punta M, Schlessinger A, Bromberg Y, Schneider R, Vriend G, Sander C, Ben-Tal N & Rost B (2014): PredictProtein-an open resource for online prediction of protein structural and functional features. Nucleic Acids Research 42, W337-W343, http://doi.org/10.1093/nar/gku366.

Yang J, Yan R, Roy A, Xu D, Poisson J & Zhang Y (2015): The I-TASSER Suite: protein structure and function prediction. Nat Methods 12, 7-8, http://doi.org/10.1038/nmeth.3213.

Zhang Y (2008): I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9, 40, http://doi.org/10.1186/1471-2105-9-40.

Published
2017-09-01
Section
Articles