Effect of crude and pure glycerol on biomass production and trehalose accumulation by Propionibacterium freudenreichii ssp. shermanii 1

  • Joanna Pawlicka-Kaczorowska Department of Biotechnology and Food Microbiology, Faculty of Food Science and Nutrition, Poznań University of Life Sciences,
  • Katarzyna Czaczyk Department of Biotechnology and Food Microbiology, Faculty of Food Science and Nutrition, Poznań University of Life Sciences,
Keywords: dairy propionibacteria, trehalose, biomass, crude glycerol

Abstract

Dairy propionibacteria, which are traditionally used for the production of Swiss cheeses, are able to synthesize valuable biomolecules, e.g. B group vitamins, propionic acid, and trehalose with unique chemical and physical properties. Both dairy propionibacteria cells and trehalose have found many applications as attractive and effective components in food, beauty and health care products. This study confirmed the ability of several strains from the genus Propionibacterium to create trehalose from glycerol. The research aimed to investigate the effect of crude and pure glycerol on biomass production and trehalose accumulation by Propionibacterium freudenreichii ssp. shermanii 1. The results indicated that the capacity for trehalose accumulation by Propionibacterium spp. was strain dependent. Propionibacterium freudenreichii ssp. shermanii 1 was able to grow on crude glycerol. For both pure and crude glycerol the highest amount of dry biomass leveled at about 4 g/L. While the use of crude glycerol had no effect on the final concentration of biomass, it reduced the accumulation of trehalose in the cells. An increase in the concentration of carbon source (2% – 8%) resulted in more than a 5-fold rise in trehalose production. The highest trehalose concentration of 195.04 mg/L was obtained with cultures of the said strain supplemented 8% with pure glycerol.

Author Biographies

Joanna Pawlicka-Kaczorowska, Department of Biotechnology and Food Microbiology, Faculty of Food Science and Nutrition, Poznań University of Life Sciences,
Department of Biotechnology and Food Microbiology, Faculty of Food Science and Nutrition
Katarzyna Czaczyk, Department of Biotechnology and Food Microbiology, Faculty of Food Science and Nutrition, Poznań University of Life Sciences,
Department of Biotechnology and Food Microbiology, Faculty of Food Science and Nutrition

References

Argüelles JC (2000) Physiological roles of trehalose in bacteria and yeasts: a comparative analysis. Arch Microbiol 17: 217–224.

Burgess CM, Smid EJ, Rutten G, Van Sinderen D (2006) A general method for selection of riboflavin-overproducing food grade micro-organisms. Microb Cell Fact 24: 1 – 24.

http://doi.org/10.1186/1475-2859-5-24

Cardoso FS, Castro RF, Burges N, Santos H (2007) Biochemical and genetic characterization of the pathways for trehalose metabolism in Propionibacterium freudenreichii, and their role in stress response. Microbiology 15: 270–280. http://doi.org/10.1099/mic.0.29262-0

Cardoso FS, Gaspar P, Hugenholtz J, Ramos A, Santos H (2004) Enhancement of trehalose production in dairy propionibacteria through manipulation of environmental conditions. Int J Food Microbiol 91: 195–204. http://doi.org/10.1016/S0168-1605(03)00387-8

Chi Z, Liu J, Ji J, Meng Z (2003) Enhanced conversion of soluble starch to trehalose by a mutant of Saccharomycopsis fibuligera sdu. J Biotechnol 120: 135–141.

Choi WJ, Hartono MR, Chan WH, Yeo SS (2011) Ethanol production from biodiesel-derived crude glycerol by newly isolated Kluyvera cryocrescens. Appl Microbiol Biotechnol 89: 1255–1264. http://doi.org/10.1007/s00253-010-3076-3

Claret C, Salmon JM, Romieu C, Bories A (1994) Physiology of Gluconobacter oxydans during dihydroxyacetone production from glycerol. Appl Microbiol Biotechnol 41: 359–365. http://doi.org/10.1007/BF00221232

Cousin FJ, Mater DD, Foligne B, Jan G (2011) Dairy propionibacteria as human probiotics: a review of recent evidence. Dairy Sci & Technol 91: 1–26. http://doi.org/10.1051/dst/2010032

Czaczyk K, Trojanowska K, Grajek W (1997) The influence of a specific microelemental environment in alginate gel beads on the course of propionic acid fermentation. Appl Microbiol Biotechnol 48: 630–635. http://doi.org/10.1007/s002530051107

Dalmasso M, Aubert J, Even S, Falentin H, Maillard MB, Parayre S, Loux V, Tanskanen J, Thierry A (2012) Accumulation of intracellular glycogen and trehalose by Propionibacterium freudenreichii under conditions mimicking cheese ripening in the cold. Appl Environ Microb 78: 6357–6364. http://doi.org/10.1128/AEM.00561-12

Dąbrowski S, Zabłotna E, Pietrewicz-Kubicz D, Długołęcka A (2012) Screening of environmental samples for bacteria producing 1,3-propanediol from glycerol. Acta Biochim Pol 59: 353–356.

Deborde C, Boyaval P (2000) Interactions between pyruvate and lactate metabolism in Propionibacterium freudenreichii subsp. shermanii: in Vivo 13C Nuclear Magnetic Resonance Studies. Appl Environ Microb 66: 2012–2020.

Deborde C, Corre C, Rolin DB, Nadal L, De Certaines JD, Boyaval P (1996) Trehalose biosynthesis in dairy Propionibacterium. J Magn Reson Anal 2: 297–304.

Drożdżyńska A, Leja K, Czaczyk K (2011) Biotechnological production of 1,3-propanediol from crude glycerol. BioTechnologia 92: 92–100.

Drożdżyńska A, Szymanowska D, Czaczyk K (2009) Optymalizacja procesu ekstrakcji trehalozy z komórek drożdży i określenie parametrów jej oznaczania techniką HPLC. Żywność Nauka Technologia Jakość 66: 30–42.

Duarte JC, Valença GP, Moran PJ, Rodrigues JA (2015) Microbial production of Propionic and Succinic acid from Sorbitol using Propionibacterium acidipropionici. AMB Express DOI: 10.1186/s13568-015-0095-65. http://doi.org/10.1186/s13568-015-0095-6

Elbein AD, Pan YT, Pastuszak I, Carroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13: 17–27. http://doi.org/10.1093/glycob/cwg047

Falentin H, Deutsch SM, Jan G, Loux V, Thierry A, Parayre S, Maillard MB, Dherbécourt J, Cousin FJ, Jardin J, Siguier P, Couloux A, Barbe V, Vacherie B, Wincker P, Gibrat JF, Gaillardin C, Lortal S (2010) The complete genome of Propionibacterium freudenreichii CIRM-BIA1T, a hardy Actinobacterium with food and probiotic applications. PloS one 5: e11748. http://doi.org/10.1371/journal.pone.0011748

Furuichi K, Hojo K, Katakura Y, Ninomiya K, Shioya S (2006) Aerobic culture of Propionibacterium freudenreichii ET-3 can increase production ratio of 1,4-dihydroxy-2-naphthoic acid to menaquinone. J Biosci Bioen. 101: 464–470. http://doi.org/10.1263/jbb.101.464

Gwiazdowska D, Trojanowska K (2006) Antimicrobial activity and stability of partially purified bacteriocins produced by Propionibacterium freudenreichii ssp. freudenreichii and ssp. shermanii. Lait 86: 141–154. https://doi.org/10.1051/lait:2006001

Higashiyama T (2002) Novel functions and applications of trehalose. Pure Appl Chem 74: 1263–1269. http://doi.org/10.1351/pac200274071263

https://www.bp.com/content/dam/bp/pdf/energy-economics/statistical-review2016/bp-statistical-review-of-world-energy-2016-full-report.pdf

Hugenholtz J, Hunik J, Santos H, Samid E (2002) Nutraceutical production by propionibacteria. Lait 82: 103–112. https://doi.org/10.1051/lait:2001009

Jan G, Rouault A, Maubois JL (2000) Acid stress susceptibility and acid adaptation of Propionibacterium freudenreichii subsp. shermanii. Lait 80: 325–336. https://doi.org/10.1051/lait:2000128

Jiang L, Cui H, Zhu L, Hu Y, Xu X, Li S, Huang H (2015) Enhanced propionic acid production from whey lactose with immobilized Propionibacterium acidipropionici and the role of trehalose synthesis in acid tolerance. Green Chem 17: 250–259. http://doi.org/ 10.1039/C4GC01256A

Kośmider A, Białas W, Kubiak P, Drożdżyńska A, Czaczyk K (2012) Vitamin B12 production from crude glycerol by Propionibacterium freudenreichii ssp. shermanii: optimization of medium composition through statistical experimental designs. Bioresource Technol 105: 128–133. http://doi.org/10.1016/j.biortech.2011.11.074

Kośmider A, Czaczyk K (2009) Perspektywy wykorzystania glicerolu w procesach biotechnologicznych. Post Mikrobiol 48: 277–287.

Kośmider A, Drożdżyńska A, Blaszka K, Leja K, Czaczyk K (2010) Propionic acid production by Propionibacterium freudenreichii ssp. shermanii using crude glycerol and whey lactose industrial wastes. Polish J of Environ Stud 19: 1249–1253.

Kujawski M, Rymaszewsi J, Cichosz G (1992) The effect of supplementation of selected metal ions on propionibacteria biomass field and production of voltatile fatty acids. Pol J Food Nutr Sci 3: 27–36.

Kujawski M, Rymaszewski M, Łaniewska-Moroz Ł, Cichosz G (1996) Możliwości zastosowania bakterii fermentacji propionowej w przemyśle spożywczym. Przem Spoż 6: 35–37.

Lee PC, Lee WG, Lee SY, Chang HN (2001) Succinic acid production with reduced by product formation in the fermentation of Anaerobiospirillum succiniciproducens using glycerol as a carbon. Biotechnol Bioeng 72: 41–48.

Martens JH, Barg H, Warren MJ, Jahn D (2002) Microbial production of vitamin B12. Appl Microbiol Biotechnol 58: 275–285. http://doi.org/10.1007/s00253-001-0902-7

Panek A (1985) Trehalose metabolism and its role in Saccharomyces cerevisiae. J Biotechnol 3: 121–130. http://doi.org/10.1016/0168-1656(85)90013-6

Papanikolaou S, Fakas S, Fick M, Chevalot I, Galiotou-Panayotou M (2008) Biotechnological valorisation of raw glycerol discharged after biodiesel (fatty acid methyl esters) manufacturing process: Production of 1,3-propanediol, citric acid and single cell oil. Biomass Bioenerg 32: 60–71.

http://doi.org/10.1016/j.biombioe.2007.06.007

Papanikolaou S, Muniglia L, Chevalot I, Aggelis G, Marc I (2002) Yarrowia lipolytica as a potential producer of citric acid from raw glycerol. J Appl Microbiol 92: 737–44.

Pawlicka J, Drożdżyńska A, Kośmider A, Czaczyk K (2015) The effect of phosphate buffer on biomass, propionic acid and trehalose production by Propionibacterium freudenreichii ssp. shermanii. EPISTEME Czasopismo Naukowo-Kulturalne 26: 85–93.

Pawlicka-Kaczorowska J, Czaczyk K (2016) Klasyczne bakterie propionowe – taksonomia, warunki hodowlane oraz zastosowanie. Post Mikrobiol 55: 367–380.

Pędziwilk F (1975) A simple plating method for the isolation and enumeration of Propionibacteria. Acta Alim Pol 25: 127–130.

Piwowarek K, Lipińska E (2015) Bakterie propionowe użyteczne w przemyśle spożywczym. Przem Spoż 69: 26–30.

Poonam, Pophaly SD, Tomar SK, De S, Singh R (2012) Multifaceted attributes of dairy propionibacteria: a review. World J Microb Biot 28: 3081–3095. http://doi.org/10.1007/s11274-012-1117-z

Ribeiro M, Leão L, Morais P, Rosa C, Panek A (1999) Trehalose accumulation by tropical yeast strains submitted to stress conditions. Antonie van Leeuwenhoek 75: 245–251.

Richards AB, Krakowka S, Dexter LB, Schmid H, Wolterbeek AP, Waalkens-Berendsen DH, Shigoyuki A, Kurimoto M (2002) Trehalose: a review of properties, history of use and human tolerance, and results of multiple safety studies. Food Chem Toxicol 40: 871–898.

Ruhal R, Aggarwal S, Choudhury B (2011) Suitability of crude glycerol obtained from biodiesel waste for the production of trehalose and propionic acid. Green Chem 13: 3492–3498. http://doi.org/ 10.1039/C1GC15847C

Ruhal R, Choudhury B (2012a) Use of an osmotically sensitive mutant of Propionbacterium freudenreichii subsp. shermanii for the simultaneous productions of organic acids and trehalose from biodiesel waste based crude glycerol. Bioresource Technol 109: 131–139. http://doi.org/10.1016/j.biortech.2012.01.039

Ruhal R, Choudhury B (2012b) Improved trehalose production from biodiesel waste using parent and osmotically sensitive mutant of Propionibacterium freudenreichii subsp. shermanii under aerobic conditions. J Ind Microbio Biotechnol 39: 1153–1160. http://doi.org/10.1007/s10295-012-1124-y

Ruhal R, Kataria R, Choudhury B (2013) Trends in bacterial trehalose metabolism and significant nodes of metabolic pathway in the direction of trehalose accumulation. Microb Biotechnol 6: 493–502. http://doi.org/ 10.1111/1751-7915.12029

Rymowicz W, Rywińska A, Marcinkiewicz M (2009) High-yield production of erythritol from raw glycerol in fed-batch cultures of Yarrowia lipolytica. Biotechnol Lett 31: 377–380. http://doi.org/10.1007/s10529-008-9884-1

Samul D, Leja K, Grajek W (2014) Impurities of crude glycerol and their effect on metabolite production. Ann Microbiol 64: 891–898. http://doi.org/10.1007/s13213-013-0767-x

Santibáñez C, Varnero MT, Bustamante M (2011) Residual glycerol from biodiesel manufacturing, waste or potential source of bioenergy: a review. Chil J Agr Res 71: 469–475. http://doi.org/10.4067/S0718-58392011000300019

Sarma SJ, Brar SK, Sydney EB, Le Bihan Y, Buelna G, Soccol CR (2012) Microbial hydrogen production by bioconversion of crude glycerol: A review. Int J Hydrogen Energ 37: 6473–6490. http://doi.org/10.1016/j.ijhydene.2012.01.050

Schiraldi C, Di Lernia I, De Rosa M (2002) Trehalose production exploiting novel approaches. Trends Biotechnol 20: 420–425.

Sonhom R, Thepsithar C, Jongsareejit B (2012) High level production of 5-amninolevulinic acid by Propionibacterium acidipropionici grown in low-cost medium. Biotechnol Lett 34: 1667–1672. http://doi.org/10.1007/s10529-012-0943-2

Stjernholm R (1958) Formation of trehalose during dissimilation of glucose by Propionibacterium. Acta Chem Scand 12: 646–649.

Stjernholm R, Wood HG (1960) Trehalose and fructose as indicators of metabolism of labelled glucose by propionic acid bacteria. J Biol Chem 235: 2753 – 2756.

Szymanowska-Powałowska D (2014) 1,3-Propanediol production from crude glycerol by Clostridium butyricum DSP1 in repeated batch. Electron J Biotechnol 17: 322–328. http://doi.org/10.1016/j.ejbt.2014.10.001

Thierry A, Deutsch SM, Falentin H, Dalmasso M, Cousin FJ, Jan G (2011) New insights into physiology and metabolism of Propionibacterium freudenreichii. Int J Food Microbiol 149: 19–27. http://doi.org/10.1016/j.ijfoodmicro.2011.04.026

Van Wyk J, Brtiz JT (2012) A rapid high-performance liquid chromatography (HPLC) method for the extraction and quantification of folates in dairy products and cultures of Propionibacterium freudenreichii. Afr J Biotechnol 11: 2087–2098. http://doi.org/10.1051/dst/2009055

Wang L, Lv J, Chu Z, Cui Y, Ren X (2006) Productionn of conjugated linoleic acid by Propionibacterium freudenreichii. Food Chem 103: 31–318. http://doi.org/10.1016/j.foodchem.2006.07.065

Yang F, Hanna MA, Sun R (2012) Value-added uses for crude glycerol – a byproduct of biodiesel production. Biotechnol Biofuels 5(13): 1–10. http://doi.org/10.1186/1754-6834-5-13

Zárate G (2012) Dairy Propionibacteria: Less Conventional Probiotic to Improve the Human and Animal Health. In Probiotic in Animals, Rigobelo E, pp 153–202. InTech, Rijeka. http://doi.org/10.5772/50320

Zhang A, Yang ST (2009) Propionic acid production from glycerol by metabolically engineered Propionibacterium acidipropionici. Process Biochem 44: 1346–1351. http://doi.org/10.1016/j.procbio.2009.07.013

Published
2017-12-31
Section
Articles