Synthesis and biological evaluation of new 4’-O-acetylisoxanthohumol and its analogues as antioxidant and antiproliferative agents

  • Monika Stompor Faculty of Medicine, Centre for Innovative Research in Medical and Natural Sciences, University of Rzeszów, Warzywna 1a, 35-310 Rzeszów, Poland
  • Marta Świtalska Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Department of Experimental Oncology, Weigla 12, 53-114 Wrocław, Poland
  • Rafał Podgórski Faculty of Medicine, Centre for Innovative Research in Medical and Natural Sciences, University of Rzeszów, Warzywna 1a, 35-310 Rzeszów, Poland
  • Łukasz Uram Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave, 35-959 Rzeszów, Poland
  • Joanna Wietrzyk Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Department of Experimental Oncology, Weigla 12, 53-114 Wrocław, Poland

Abstract

Isoxanthohumol (2) and its 4’-O-monoacylated (3) and 7,4’-O-diacetylated (4) derivatives were synthesized and evaluated in vitro for their cytotoxic activity to several cancer cell lines of various origins: MCF-7 (breast), A549 (lung), MESSA (uterine sarcoma), LoVo (colon), drug-resistant human cancer cells (MESSA/DX and LoVo/DX), glioblastoma (U-118 MG) and also towards non-cancer cell line MCF-10A (normal breast cells). The antiproliferative assay indicated that 7,4’-di-O-acylisoxanthohumol (4) is similar cytotoxic to selected cell lines (A549, MES-SA, MES-SA/5DX, and U-118 MG) to those its precursor, isoxanthohumol (2). Compound 4 was only slightly more cytotoxic to lung, colon, breast (cancer and normal) and uterine sarcoma (drug sensitive and drug resistant) cell lines compared to its monoacylated derivative (3). Both acylated isoxanthohumols showed preferential activity against tumor cells (MCF-7) and low cytotoxicity to normal cells (MCF-10A), which suggests selectivity of the esters to cancer cells. Additionally, this activity was higher than for isoxanthohumol (2). To the best of our knowledge this is the first report on bioactivity of monoacylated isoxanthohumol (3) and its ester derivatives as apoptosis inducers toward drug resistant cell cultures. Acylation of IXN (2) led to decrease an antioxidant activity by the method of DPPH in the order isoxanthohumol (2) > 4’-O-acetylisoxanthohumol (3) > 7,4’-di-O-acetylisoxanthohumol (4), respectively.

References

Anioł M, Świderska A, Stompor M, Żołnierczyk AK (2012) Antiproliferative activity and synthesis of 8-prenylnaringenin derivatives by demethylation of 7-O- and 4’-O-substituted isoxanthohumols. Med Chem Res 21: 4230-4238. Doi: 10.1007/s00044-011-9967-8

Allsopp P, Possemiers S, Campbell D, Gill C, Rowland I (2013) A comparison of the anticancer properties of isoxanthohumol and 8-prenylnaringenin using in vitro models of colon cancer. BioFactors 39: 441–447. Doi: 10.1002/biof.1084

Arczewska M, Kamiński D, Górecka E, Pociecha D, Rój E, Sławińska-Brych A, Gagoś M (2013) The molecular organization of prenylated flavonoid xanthohumol in DPPC multibilayers: X-ray diffraction and FTIR spectroscopic studies. BBA Biomembranes 1828: 213-222. Doi: 10.1016/j.bbamem.2012.10.009

Delmulle L, Bellahcéne A, Dhooge W, Comhaire F, Roelens F, Huvaere K, Heyerick A, Castronovo V, De Keukeleire D (2006) Antiproliferative properties of prenylated flavonoids from hops (Humulus lupulus. L) in human prostate cancer cell lines. Phytomedicine 13: 732-734. Doi: 10.1016/j.phymed.2006.01.001

Harker WG, Sikic BI (1985) Multidrug (pleiotropic) resistance in doxorubicin-selected variants of the human sarcoma cell line MES-SA. Cancer Res 45: 4091-6.

Hudcová T, Bryndová J, Fialová K, Fiala J, Karabín M, Jelínek L, Dostálek P (2014) Antiproliferative effects of prenylflavonoids from hops on human colon cancer cell lines. J Inst Brew 120: 225–230. Doi: 10.1002/jib.139

Inki T, Okumura K, Matsui H, Hosoya T, Kumazawa S (2017) Effect of harvest time on some in vitro functional properties of hop polyphenols. Food Chem 225: 69-76. Doi: 10.1016/j.foodchem.2017.01.002

Kiekow CJ, Figueiro F, Ditrich F, Vechia D, Pires ENS, Jandrey EHF, Gnoatto SCB, Salbego CG, Battastini AMO, Gosmann G (2016) Quercetin derivative induces cell death in glioma cells by modulating NF-kappa B nuclear translocation and caspase-3 activation. Eur J Pharm Sci 84: 116-122. Doi: 10.1016/j.ejps.2016.01.019

Krajnović T, Kaluderović GN, Wessjohann LA, Mijatović S, Maksimović-Ivanić D (2016) Versatile antitumor potential of isoxanthohumol: enhancement of paclitaxel activity in vivo. Pharmacol Res 105: 62-73. Doi: 10.1016/j.phrs.2016.01.011e

Lim HJ, Nguyen TTH, Kim NM, Park JS, Jang TS, Kim D (2017) Inhibitory effect of flavonoids against NS2B-NS3 protease of ZIKA virus and their structure activity relationship. Biotechnol Lett 39: 415-421. Doi: 10.1007/s10529-016-2261-6

Magalhães PJ, Guido LF, Cruz JM, Barros AA (2007) Analysis of xanthohumol and isoxanthohumol in different hop products by liquid chromatography-diode array detection–electrospray ionization tandem mass spectrometry. J Chromatogr A 1150: 295–301. Doi: 10.1016/j.chroma.2006.08.019

Miranda CL, Stevens JF, Helmrich A, Henderson MC, Rodriguez RJ, Yang YH, Deinzer ML, Barnes DW, Buhler DR (1999) Antiproliferative and cytotoxic effects of prenylated flavonoids from hops (Humulus lupulus) in human cancer cell lines. Food Chem Toxicol 37: 271-285. Doi: 10.1016/S0278-6915(99)00019-8

Mizobuchi S, Sato Y (1984) A new flavanone with antifungal activity isolated from hops. Agric Biol Chem 48: 2771-2775.

Mukai R, Fujikura Y, Murota K, Uehara M, Minekawa S, Matsui N, Kawamura T, Nemoto H, Terao J (2013) Prenylation enhances quercetin uptake and reduces efflux in Caco-2 cells and enhances tissue accumulation in mice fed long-term. J Nutr 143: 1558-1564. Doi: 10.3945/jn.113

Nevozhay D (2014) Cheburator software for automatically calculating drug inhibitory concentrations from in vitro screening assays. Plos One 9: e106186. Doi: 10.1371/journal.pone.0106186

Saik AYH, Lim YY, Stanslas J, Choo WS (2017) Enzymatic synthesis of quercetin oleate esters using Candida antarctica lipase B. Biotechnol Lett 39: 297-304. Doi: 10.1007/s10529-016-2246-5

Sidoryk K, Jaromin A, Edward JA, Świtalska M, Stefańska J, Couch P, Zagrodzka J, Szczepek W, Peczyńska-Czoch W, Wietrzyk J, Kozubek A, Zarnowski R, Andes DR, Kaczmarek Ł (2014) Searching for new derivatives of neocryptolepine: synthesis, antiproliferative, antimicrobial and antifungal activities. Eur J Med Chem 78: 304-13. Doi: 10.1016/j.ejmech.2014.03.060

Stevens JF, Taylor AW, Clawson JE, Deinzer ML (1999) Fate of xanthohumol and related prenylflavonoids from hops to beer. J Agric Food Chem 4: 2421–2428. Doi: 10.1021/jf990101k

Stompor M, Potaniec B, Szumny A, Zieliński P, Żołnierczyk A, Anioł M (2013) Microbiological reduction of xanthohumol and 4-methoxychalcone. Przem Chem 92: 574-578.

Stompor M, Żarowska B (2016) Antimicrobial activity of xanthohumol and its selected structural analogues. Molecules 21: 608. Doi: 10.3390/molecules21050608

Terao J, Mukai R (2014) Prenylation modulates the bioavailability and bioaccumulation of dietary flavonoids. Archiv Biochem Biophys 559: 12-16. Doi: 10.1016/j.abb.2014.04.002

Venturelli S, Burkard M, Biendl M, Lauer UM, Frank J, Busch C (2016) Prenylated chalcones and flavonoids for the prevention and treatment of cancer. Nutrition 32: 1171-1178. Doi: 10.1016/j.nut.2016.03.020

Wesołowska O, Gąsiorowska J, Petrus J, Czarnik-Matusewicz B, Michalak K (2014) Interaction of prenylated chalcones and flavanones from common hop with phosphatidylcholine model membranes. BBA Biomembranes 1838: 173-184. Doi: 10.1016/j.bbamem.2013.09.009

Wilhelm, H, Wessjohann LA (2006) An effecient synthesis of the phytoestrogen 8-prenylnaringenin from xanthohumol by a novel demethylation process. Tetrahedron 62: 6961-6966. Doi: 10.1016/j.tet.2006.04.060

Young WK, Ho YF, Malek SNA (2015) Xanthohumol induces apoptosis and S phase cell cycle arrest in A549 non-small cell lung cancer cells. Pharmacogn Mag 11: S275-S283. Doi: 10.4103/0973-1296.166069

Published
2017-08-12
Section
Articles