Selection and analysis of a DNA aptamer binding α-amanitin from Amanita phalloides
Abstract
Mushroom foraging is very popular in some regions of the world. Sometimes toxic and edible mushrooms are mistaken by mushroom collectors, leading to serious human poisoning. The group of mushrooms highly dangerous for human health includes Amanita phalloides. This mushroom produces a toxic octapeptide called α-amanitin which is an inhibitor of nuclear RNA polymerase II. The inhibition of this polymerase results in the abortion of mRNA synthesis. The ingestion of A. phalloides causes liver failure due to the fact that most of the toxin is uptaken by hepatocytes. The hospitalization of poisoned patients involves the removal of the toxin from the digestive tract, its dilution in the circulatory system and the administration of therapeutic adjuvants. Since there is no effective antidote against amanitin poisoning, in this study we developed a DNA aptamer exhibiting specific binding to α-amanitin. This aptamer was selected using the SELEX (Systematic Evolution of Ligands by Exponential Enrichment) method. Next, its ability of toxin removal from aqueous solution was confirmed by pull-down assay. The aptamer region sufficient for α-amanitin binding was determined. Finally, the dissociation constant of the α-amanitin/DNA aptamer complex was calculated.References
Avci-Adali M, Paul A, Wilhelm N, Ziemer G, Wendel HP (2010) Upgrading SELEX technology by using lambda exonuclease digestion for single-stranded DNA generation. Molecules 15:1–11. doi: 10.3390/molecules15010001
Bartnicki F et al. (2017) The Argi system: one-step purification of proteins tagged with arginine-rich cell-penetrating peptides [in press]
Bartnicki F, Kowalska E, Pels K, Strzalka W (2015) Imidazole-free purification of His3-tagged recombinant proteins using ssDNA aptamer-based affinity chromatography. J Chromatogr A 1418:130–139. doi: 10.1016/j.chroma.2015.09.055
Bergis D, Friedrich-Rust M, Zeuzem S, Betz C, Sarrazin C, Bojunga J (2012) Treatment of Amanita phalloides intoxication by fractionated plasma separation and adsorption (Prometheus®). J Gastrointest Liver 21:171–176. doi: 10.1016/S0168-8278(11)60913-6
Bonnet MS, Basson PW (2002) The toxicology of Amanita phalloides. Homeopathy 91:249–254. doi: doi: 10.1054/homp.2002.0056
Bushnell DA, Cramer P, Kornberg RD (2002) Structural basis of transcription: α-amanitin–RNA polymerase II cocrystal at 2.8 Å resolution. P Natl Acad SCI USA 99:1218–1222. doi: 10.1073/pnas.251664698
Dwivedi HP, Smiley RD, Jaykus LA (2013) Selection of DNA aptamers for capture and detection of Salmonella Typhimurium using a whole-cell SELEX approach in conjunction with cell sorting. Appl Microbiol Biotechnol 97:3677–3686. doi: 10.1007/s00253-013-4766-4
Ellington A, Szostak J (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–22. doi: 10.1038/346818a0
Enjalbert F, Rapior S, Nouguier-Soulé J, Guillon S, Amouroux N, Cabot C (2002) Treatment of amatoxin poisoning: 20-year retrospective analysis. J Toxicol-Clin Toxic 40:715–757. doi: 10.1081/CLT-120014646
Ferenc T, Lukasiewicz B, Ciecwierz J (2009) Poisonings with Amanita phalloides. Medycyna pracy [Occupational Medicine] 60:415–426.
Garcia J, Costa VM, Carvalho A, Baptista P, de Pinho PG, de Lourdes Bastos M, Carvalho F (2015) Amanita phalloides poisoning: Mechanisms of toxicity and treatment. Food Chem Toxicol 86:41–55. doi: 10.1016/j.fct.2015.09.008
Hermann T, Patel DJ (2000) Adaptive recognition by nucleic acid aptamers. Science (New York, NY) 287:820–825. doi: 10.1126/science.287.5454.820
Hong KL, Sooter LJ (2015) Single-Stranded DNA Aptamers against Pathogens and Toxins: Identification and Biosensing Applications. BioMed Res Int 2015:1–31. doi: 10.1155/2015/419318
Huizenga DE, Szostak JW (1995) A DNA aptamer that binds adenosine and ATP. Biochemistry 34:656–665. doi: 10.1021/bi00002a033
James W (2000) Aptamers. Encyclopedia of Analytical Chemistry RA Meyers (Ed) John Wiley & Sons Ltd, Chichester 4848–4871.
Kaplan CD, Larsson KM, Kornberg RD (2008) The RNA Polymerase II Trigger Loop Functions in Substrate Selection and Is Directly Targeted by α-Amanitin. Mol Cell 30:547–556. doi: 10.1016/j.molcel.2008.04.023
Kaymaz MB, Kandemir FM, Pamukҫu E, Erӧksüz Y, Özdemir N (2016) Alfa-Amanitin İle Oluşturulmuş Karaciğer Hasari Üzerine Enginar (Cynara scolymus) Sulu Yaprak Ekstresinin Etkileri. Kafkas Univ Vet Fak 23:155–160. doi: 10.9775/kvfd.2016.16094
Keefe AD, Pai S, Ellington A (2010) Aptamers as therapeutics. Nat Rev Drug Discov 9:537–550. doi: 10.1038/nrd3141
Kostek H, Szponar J, Tchórz M, Majewska M, Lewandowska-Stanek H (2012) Silibinin and its hepatoprotective action from the perspective of a toxicologist. Przegląd lekarski [Medical Review] 69:541–3.
Kowalska E, Bartnicki F, Pels K, Strzalka W (2014) The impact of immobilized metal affinity chromatography (IMAC) resins on DNA aptamer selection. Anal
Bioanal Chem 406:5495–5499. doi: 10.1007/s00216-014-7937-y
Lee SC, Gedi V, Ha NR, Cho JH, Park HC, Yoon MY (2015) Development of receptor-based inhibitory RNA aptamers for anthrax toxin neutralization. Int J Biol Macromol 77:293–302. doi: 10.1016/j.ijbiomac.2015.03.043
Ng EW, Shima DT, Calias P, Cunningham Jr. ET, Guyer DR, Adamis AP (2006) Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov 5:123–132. doi: 10.1038/nrd1955
Pei X, Zhang J, Liu J (2014) Clinical applications of nucleic acid aptamers in cancer. Mol Clin Oncol 2:341–348. doi: 10.3892/mco.2014.255
Poucheret P, Fons F, Doré JC, Michelot D, Rapior S (2010) Amatoxin poisoning treatment decision-making: Pharmaco-therapeutic clinical strategy assessment using multidimensional multivariate statistic analysis. Toxicon 55:1338–1345. doi: 10.1016/j.toxicon.2010.02.005
Santi L, Maggioli C, Mastroroberto M, Tufoni M, Napoli L, Caraceni P (2012) Acute Liver Failure Caused by Amanita phalloides Poisoning. Int Med Case Rep J 2012:1–6. doi: 10.1155/2012/487480
Smith MR, Davis RL (2016) Mycetismus: a review. Gastroenterology Report 4:107–112. doi: 10.1093/gastro/gov062
Tan L, He R, Li Y, Liang Y, Li H, Tang Y (2016) Fabrication of a biomimetic adsorbent imprinted with a common specificity determinant for the removal of α- and β-amanitin from plasma. Journal of Chromatography A 1459:1–8. doi: 10.1016/j.chroma.2016.06.072
Tian R-Y, Lin C, Yu S-Y, Gong S, Hu P, Li Y-S, Wu Z-C, Gao Y, Zhou Y, Liu Z-S, Ren H-L, Lu S-Y (2016) Preparation of a Specific ssDNA Aptamer for Brevetoxin-2 Using SELEX. J Anal Methods Chem 2016:1–8. doi: 10.1155/2016/9241860
Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510.
Vavvas D, D’Amico DJ (2006) Pegaptanib (Macugen): Treating Neovascular Age-Related Macular Degeneration and Current Role in Clinical Practice. Ophthalmology Clinics of North America 19:353–360. doi: 10.1016/j.ohc.2006.05.008
Vivekananda J, Salgado C, Millenbaugh NJ (2014) DNA aptamers as a novel approach to neutralize Staphylococcus aureus α-toxin. Biochem Biophys Res Commun 444:433–438. doi: 10.1016/j.bbrc.2014.01.076
Wang C, Zhang J, Zhang Y, Peng Z, Xueqiang X, Bian P, Ma W, Qin C (2014) Experience of Treatments of Amanita Phalloides-induced Fulminant Liver Failure with Molecular Adsorbent Recirculating System and Therapeutic Plasma Exchange. Asaio J 13:181–186. doi: 10.5152/jaem.2014.75608
Wang P, Yang Y, Hong H, Zhang Y, Cai W, Fang D (2011) Aptamers as therapeutics in cardiovascular diseases. Curr Med Chem 18:4169–4174. doi: BSP/CMC/E-Pub/2011/ 314a [pii]
Ward J, Kapadia K, Brush E, Salhanick SD (2013) Amatoxin poisoning: case reports and review of current therapies. J Emerg Med 44:116–21. doi: 10.1016/j.jemermed.2012.02.020
Zhu Q, Liu G, Kai M (2015) DNA Aptamers in the Diagnosis and Treatment of Human Diseases. Molecules 20:20979–97. doi: 10.3390/molecules201219739
Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415.
Acta Biochimica Polonica is an OpenAccess quarterly and publishes four issues a year. All contents are distributed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY 4.0) license. Everybody may use the content following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
Copyright for all published papers © stays with the authors.
Copyright for the journal: © Polish Biochemical Society.