Cytotoxicity of anticancer aziridinyl-substituted benzoquinones in primary mice splenocytes.
Abstract
The anticancer activity of aziridinyl-quinones is mainly attributed to their quinone oxidoreductase 1 (NQO1)-catalyzed two-electron reduction into DNA-alkylating products. However, little is known about their cytotoxicity in primary cells, which may be important in understanding their side effects. We found that the cytotoxicity of aziridinyl-unsubstituted quinones (n = 12) in mice splenocytes with a low amount of NQO1, 4 nmol × mg(-1) × min(-1), was caused mainly by the oxidative stress. Aziridinyl-benzoquinones (n = 6) including a novel anticancer agent RH1 were more cytotoxic than aziridinyl-unsubstituted ones with the similar redox properties, and their cytotoxicity was not decreased by an inhibitor of NQO1, dicumarol. The possible reasons for their enhanced cytotoxicity are discussed.Acta Biochimica Polonica is an OpenAccess quarterly and publishes four issues a year. All contents are distributed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY 4.0) license. Everybody may use the content following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
Copyright for all published papers © stays with the authors.
Copyright for the journal: © Polish Biochemical Society.