Kinin-generating cellular model obtained from human glioblastoma cell line U-373.

  • Ibeth Guevara-Lora Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.;
  • Beata Blonska
  • Alexander Faussner
  • Andrzej Kozik

Abstract

Kinins, a group of important pro-inflammatory peptides, are abundantly found in tissues and biological fluids of cancer patients. Bradykinin, the major representative of kinins, induces vascular permeability and, in consequence, promotes tumor expansion. Additionally, the kinin-induced inflammatory responses, especially those mediated by kinin metabolites without the C-terminal arginine residue, lead to enhanced tumor growth. The present study aimed at analyzing the ability of the human glioblastoma cell line U-373, derived from a malignant tumor, to produce kinin peptides. The proteins involved in kinin generation, i.e., the kininogens and the kallikreins, were shown to be expressed in these cells. Moreover, tumor necrosis factor α, a proinflammatory cytokine that mediates tumorigenesis, was found to enhance the expression of enzymes associated with kinin production. The strong binding of kininogen to the cell surface and the enzymatic degradation of this protein by cells suggest the activation of kinin-generating systems. Indeed, glioblastoma cells, pre-treated with tumor necrosis factor α, released kinin peptides from exogenous kininogen. The expression of kinin receptors in these cells was also shown to increase under the influence of this cytokine. Our results suggest that the human glioblastoma cell line U-373 constitutes a good cellular model that can be helpful in cancer research focused on kinin-induced inflammation. Furthermore, our findings can contribute to new approaches in cancer treatment with the use of kinin receptor antagonists and inhibitors of kinin production.
Published
2013-06-12
Section
Articles