A computational approach to structural properties of glycoside hydrolase family 4 from bacteria.
Abstract
Structural bioinformatics approaches applied to the alpha- and beta-glycosidases from the GH4 enzyme family reveal that, despite low sequence identity, these enzymes possess quite similar global structural characteristics reflecting a common reaction mechanism. Locally, there are a few distinctive structural characteristics of GH4 alpha- and beta-glycosidases, namely, surface cavities with different geometric characteristics and two regions with highly dissimilar structural organizations and distinct physicochemical properties in the alpha- and beta-glucosidases from Thermotoga maritima. We suggest that these structurally dissimilar regions may be involved in specific protein-protein interactions and this hypothesis is sustained by the predicted distinct functional partners of the investigated proteins. Also, we predict that alpha- and beta-glycosidases from the GH4 enzyme family interact with difenoconazole, a fungicide, but there are different features of these interactions especially concerning the identified structurally distinct regions of the investigated proteins.Acta Biochimica Polonica is an OpenAccess quarterly and publishes four issues a year. All contents are distributed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY 4.0) license. Everybody may use the content following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
Copyright for all published papers © stays with the authors.
Copyright for the journal: © Polish Biochemical Society.