Nature of cross-seeding barriers of amyloidogenesis.
Abstract
The epidemics of bovine spongiform encephalopathy (BSE) several decades ago and present epidemics of chronic wasting disease (CWD) among cervids posed a threat of cross-species infections to humans or other animals. Therefore, the question as to the molecular nature of the species barriers to transmissibility of prion diseases is very important. We approached this problem theoretically, first developing a model of template-monomer interaction based on logical and topological grounds and on experimental data about cross-seeding of PrP 23-144 protein orthologs. Further, we propose that the strength of the cross-seeding barriers is proportional to dissimilarity of key amyloidogenic regions of the proteins. This dissimilarity can be measured by dissimilarity function we propose. Scaled on experimental data, this function predicts if cross-seeding can occur between different variants of PrP23-144. The resemblance of PrP23-144 cross-seeding barriers to the barriers of cross-species transmissibility of prion diseases is discussed. We suggest that a similar theoretical approach could be applied to predicting the occurrence of species barriers of prion diseases at least in part corresponding to the process of multiplication of infectious agent.Acta Biochimica Polonica is an OpenAccess quarterly and publishes four issues a year. All contents are distributed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY 4.0) license. Everybody may use the content following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
Copyright for all published papers © stays with the authors.
Copyright for the journal: © Polish Biochemical Society.