Activation of phenylpropanoid pathway in legume plants exposed to heavy metals. Part I. Effects of cadmium and lead on phenylalanine ammonia-lyase gene expression, enzyme activity and lignin content.

  • Sylwia Pawlak-Sprada Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland.;
  • Magdalena Arasimowicz-Jelonek
  • Magdalena Podgórska
  • Joanna Deckert

Abstract

Species-specific changes in expression of phenylalanine ammonia-lyase (PAL) and lignin content were detected in roots of soybean (Glycine max L.) and lupine (Lupinus luteus L.) seedlings treated with different concentrations of cadmium (Cd(2+), 0-25 mg/l) or lead (Pb(2+), 0-350 mg/l). The stimulatory effect of both metals was observed in mRNA coding for PAL in soybean. In the case of lupine, changes of PAL mRNA level were dependent on the metal used: Cd(2+) caused a decrease, whereas Pb(2+) an increase of PAL transcript level. The activity of PAL was enhanced in both plant species at higher metal concentrations (15-25 mg/l of Cd(2+) or 150-350 mg/l of Pb(2+)); however it was not directly correlated with PAL mRNA. This suggests a transcriptional and posttranscriptional control of PAL expression under heavy metals stress. In soybean, Cd(2+) or Pb(2+) treatment increased lignin content, while in lupine the effect was opposite. The decreased lignin accumulation in lupine roots in response to heavy metals, despite an increased PAL activity, suggests that the activated phenylpropanoid pathway was involved in the synthesis of secondary metabolites other than lignin.
Published
2011-04-19
Section
Articles